
Digital Transmission

July 7, 2009

This tutorial is in support of module “EE401B:
Digital Transmission”.

On completing this module and tutorials stu-
dents should be able to:

• Describe a range of baseband and passband
digital modulation techniques including base-
band PAM, passband PAM, PSK, QPSK,
QAM and Spread Spectrum modulation.

• Calculate the bandwidth and probability of er-
ror for a subset of these techniques.

• Explain the advantages and disadvantages of
using different modulation techniques with re-
gard to signal bandwidth and noise perfor-
mance.

• Explain the operation and advantages of com-
bining error coding with modulation using soft
decision decoding. Use the Viterbi algorithm
to decode a sequence from a simple convolu-
tion code.

• Describe a range of modern advanced mod-
ulation techniques, and typically where they
are used and what advantages they give. This
should include GMSK, DMT and COFDM.

Students are expected to complete all assessments
associated with this tutorial, and the marks will be
counted formally towards their final mark for the
module.

Modulation Basics

This set of tutorial pages is intended to introduce
and justify some of the basics behind modulation
for transmission of signals. It is the first section for
my Digital Transmission Course and should take
1-2 weeks to complete

Telephone 4 kHz (300--3400Hz)
Radio - monaural, AM 8 kHz (160Hz--8kHz)
Radio - stereo, FM 15 kHz (30Hz--15kHz)
Telegraphy (CCITT-2) 120 Hz
Facsimile (FAX) 1.1 kHz
Television 6.5 MHz
High Definition TV 30 MHz

Assessment
Some very simple preliminary questions on
material that you are expected to know
before starting the course.

Deadline: 2009-10-18 00:59:00
No Questions: 3
Time Allowed: 10 min

Bandwidth Requirements Of Com-
mon Signals

Given below is a table of the bandwidth of some
common signals.

Audio

Two factors determine the frequency range required
for the transmission of speech by telephony (i) intel-
ligibility as a function of frequency and (ii) energy
as a function of frequency. Tests to determine the
recognisability of syllables as the frequency range
is reduced have revealed that the frequency range
1.5-2.5 kHz is most important. However most of
the energy (80%) in typical speech lies in frequen-
cies <1kHz. By international agreement the range
adopted for telephony is 300 Hz - 3.4 kHz which
embraces >60% of the energy and a high articula-
tion efficiency. To make allowance for multiplexing
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Figure 2: CCITT-2

and filtering a bandwidth of 4 kHz is allocated. For
entertainment purposes, as on monaural radio, the
bandwidth must be increased to 8 kHz to be ac-
ceptably natural.

Music

The range of the most acute human hearing ex-
tends from 10 Hz to 18 kHz. The range 160 Hz
to 8 kHz has been taken as standard for monaural
radio reproduction while stereophonic transmission
uses 50 Hz to 15 kHz. A good home speaker sys-
tem can reproduce sounds in the range 40 Hz - 20
kHz. (Purists argue that subtlety of tone or colour
requires the inclusion of harmonics beyond the hu-
man audible range).

Telegraphy

The earliest form of digital communication was
telegraphy dating from 1837. The sending oper-
ator tapped out Morse code with a key and the
receiving operator listened to (or looked at) the in-
coming pattern of pulses and translated them into
the message.

Although Morse code is still used for amateur
short-wave transmissions it is not suitable for ma-
chine telegraphy where conversion from message
(letters) to signal (pulses) and back again is car-
ried out automatically by teleprinters. For machine
telegraphy and telex codes such as CCITT-2 are
used. This uses 5 equal length bits to represent a
character plus a start sequence of 1 bit and an end
mark of 1.5 bit lengths.

 

fundamental 
frequency 

Figure 3: The relationship between the fundamen-
tal frequency of a signal and its bit rate

Figure 4: The analogue Fax scanner

The bit length in this code is 22 ms. The trans-
mission speed is measured as the reciprocal of the
time interval of the shortest pulse (one bit length).
For CCITT-2 this is 1/22ms = 45 bauds. To de-
termine the bandwidth that must be allocated we
determine the highest number of transitions per
second which can be made i.e. when the signal is
0101010 (see figure 3). The sinusoidal signal with
the same period as this pulsed pattern is the fun-
damental frequency. Show for yourself that this is
22.5Hz for CCITT-2.

We shall find that modulation requires that we
double this to 45 Hz. If the signal is multiplexed
with others guard bands are necessary between the
channels to allow for filtering and the bandwidth
allocated per channel is 120Hz.

Fax

This system transmits pictorial information over
standard telephone lines.

In the analogue fax scanner the graphic is
wrapped around a cylindrical drum which rotates
at a constant speed and simultaneously traverses
axially on a lead screw. A light spot focused on the
surface traces a spiral path around the drum. The
reflected light intensity is modulated using a chop-
per disk to provide modulation and measured by a
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Figure 5: The Fax Raster Scan

photodetector. The fax receiver is similar in that
the received signal is varies the intensity of a light
source focused onto photographic paper wrapped
round an identical drum to that in the receiver.

By international agreement the speed of rotation
of drum is 1 rev/sec and a parameter called the
index of co-operation is defined by

index of co-operation = drum diameter (
D)/scanning pitch ( p) =352.

By adherence to a common index drums of dif-
ferent diameters may be used in transmitter and
receiver without distorting the transmitted image.
In order to obtain equal resolution in the horizontal
and vertical dimensions the system must be able to
reproduce a test pattern of black and white squares
where the side length of each square is equal to the
scanning pitch p (The horizontal scan steps by p at
the end of each vertical scan).

Hence no of squares scanned per sec = πD/p =
352π and time to scan 1 black and one white square
= 2/352π sec giving a fundamental frequency of
353π/2 = 553 Hz.

As with telegraphy we double this figure to ar-
rive at the bandwidth required to take account of
modulation to be 1106 Hz

Television

We can estimate the bandwidth required for tele-
vision transmission in exactly the same way as for
fax. In the case of television the graphic is scanned
by electron beam. In order to give an impression of
continuous movement without flicker the graphics
must be scanned at a rate of 25 graphics/second.
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Figure 6: The Television Raster Scan

The British PAL television system (show in fig-
ure 6)) uses 625 lines and the graphic aspect ra-
tio = width/height = 4/3; hence one graphic has
(625)2 x 4/3 squares and the number of pairs of
squares scanned per sec (fundamental frequency)
= 6522 × 4/3 × 25/2 = 6.51 × 106Hz

Video signals are modulated using a principle dif-
ferent from that for telegraphy or fax and 6.51 MHz
is the bandwidth i.e. we do not double the funda-
mental frequency. Despite many subtleties this es-
timate for the bandwidth is more or less correct in
practice.

What Is Modulation?

Modulation is the variation of the characteristics
of one signal (the carrier) in proportion to the am-
plitude of a second, information-carrying signal, as
illustrated in figure 7). Modulation results in the
transfer of the signal information to higher or lower
frequency. If a sinusoidal carrier is used (as is usu-
ally the case) then either the amplitude, frequency
or phase of the carrier signal may be modulated giv-
ing rise to amplitude modulation (AM), frequency
modulation (FM) or phase modulation (PM) re-
spectively.

Digital Modulation

In the case of digital modulation there are a num-
ber of steps which must be taking in encoding and
decoding the information for transmission.
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Sinusoidal carrier
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Amplitude varies with t: 

Amplitude Modulation 
(AM)

Frequency varies with t: 

Frequency Modulation 
(FM)

Phase varies with t: 

Phase Modulation 
(PM)

Figure 7: Modulation
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Figure 8: A Digital Transmission System

Starting from an information source the first step
is called source coding . This process maps the in-
formation source efficiently into a discrete digital
format. If the original source were analogue then
source coding corresponds to efficiently represent-
ing the signal in a digital format. If the original
source is digital then signal compression may be
used to increase efficiency. The result is discrete
digital data

The next process, before modulation is channel
coding which maps the discrete data onto format
suitable for the characteristics of the transmission
system. For example if the transmission introduces
errors in the data error control coding, optimised
for the specific transmission system, will be re-
quired.

Finally the digital modulation maps the discrete
digital signal onto an analogue signal ( quantisation
)for the transmission medium, as all transmission
media (excepting quantum based communications
which are beyond the scope of this tutorial) are
analogue in nature.

Why Modulate?

The principle reasons why we need to modulate sig-
nals are as follows:

To make efficient use of the lines (multiplexing)
As already noted a telephone channel is quite
intelligible within the 300--3400 Hz audio
range. Typically coaxial cable has about
3MHz bandwidth, and so can accommodates
many channels. We therefore need to shift the
frequencies of some of the channels so we can
pack them together (multiplex) and make full
use of the available bandwidth

To make radio communications feasible
Radio antennas are only efficient when ap-
proximately the same size as the period of
the radio frequency. A 1kHz radio signal
has ,a period of 300km which is clearly
impractical. We therefore need to shift
the transmission to higher frequencies with
shorter period more practical for transmission.
The second advantage of doing this is that
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we are converting a “broadband” signal into a
“narrowband” signal e.g. baseband audio has
a bandwidth to frequency ratio of 3400/300
= 11, but modulating that to 10 MHz gives
1003400/1000300 = 1.01. Again we can
exploit this extra bandwidth for multiplexing
many radio channels.

To simplify signal processing It is much sim-
pler to design electronic systems for narrow
frequency bands. Using the principle de-
scribed above we can use modulation to con-
vert a broadband signal to a narrowband sig-
nal. Some component types are optimal in a
fixed frequency range. Modulation allows us
to shift our signal to that range, and example
of this is that high gain, high selectivity IF (in-
termediate frequency) filters are only feasible
at certain frequencies.

Types Of Signals And Systems

We need mathematical tools to develop insight into
the transmission of signals in a communications
system. Depending on the types of signals and
which feature we are interested in we need to dis-
tinguish different classes of signals

Periodic and aperiodic signals

A signal, g(t) is periodic if it satisfies the condition

g(t) = g(t + T0)

for all t where t is time and T0 a constant. T0 is the
period of the signal, the duration of one complete
cycle of g(t).

Any signal for which this condition doesn’t hold,
for any value of T0 is aperiodic .

Deterministic and Random Signals

A deterministic signal is a signal for which there
is no uncertainty with respect to its value at any
time. It may modelled as a completely specified
function of time. With a random signal there is an
uncertainty in a signal before it occurs, and we can
model it only as having a probability of a particular
value as a function of time

Energy and Power Signals

In electrical systems a signal is represented by a
voltage or current. If we consider a voltage v(t)
across a resistor R producing current i(t) then we
may write the instantaneous power dissipated in
the resistor as

p(t) = |v(t)|2/R = |i(t)|2R
i.e. the power dissipated is proportional to the
signal amplitude (current or voltage) squared. In
analysing signals we normalise the calculations by
assuming a 1-ohm resistor to we may express the
instantaneous power for a signal as

p(t) = |g(t)|2

Based on this we then have the total energy of a
signal g(t) defined by

E =

∫ ∞

−∞
|g(t)|2 dt

Correspondingly, the average power of of a signal
g(t) defined by

P = lim
t→∞

1

2T

∫ T

−T

|g(t)|2 dt

For an energy signal the total energy of the signal
satisfies the condition

0 < E < ∞
For a power signal the total energy of the signal
satisfies

0 < P < ∞
These are mutually exclusive conditions. An energy
signal has zero average power and a power signal
has infinite energy. Usually periodic signals and
random signals are power signals, and signals that
are deterministic and aperiodic are energy signals.

Representation of Signals

There are many possible ways to represent signals
however the most useful, in the context of com-
munications is to represent them as a sum of si-
nusoidal components of different frequencies and
phases. The reasons for this are due to the fact
that the response of a system to a sinusoidal input
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is another sinusoid of the same frequency but with
a different amplitude and phase provided:

1. The system is linear and obeys the prin-
ciple of superposition . That is if a linear
combination of input signals is applied to
the system then the output of the system
will be a linear sum of the individual out-
puts that would be obtained if the signals
were applied individually;

2. The system is time invariant . That is
the response of a system to an input that
is time delayed is simply time delayed.

This leads to the use of Fourier methods for the
analysis of signals.

Despite seeing a forest of integration signs when
dealing with Fourier methods there is in fact very
little integration done, and that which is is at A-
level. A familiarity with the theorems associated
with Fourier Analysis (See Fourier Analysis (Sec-
tion )) together with some basic integration re-
sults will solve most common problems. In prac-
tice Fourier Analysis is often done digitally with a
minimum of mathematics to, for example, extract
information from noisy signals, design electrical fil-
ters, and clean TV graphics.

If a signal is periodic then Fourier series are used
to represent the signal as a set of harmonically re-
lated sine waves. If the signal however is an energy
signal the Fourier transform is used to represent
the signal as a continuous range of sinusoids. Ap-
plying these techniques we obtain the frequency-
domain representation or spectrum of the signal
which we can then use to simplify our analysis of
linear systems such as communication systems.

Fourier Synthesis

If a signal waveform is periodic, as shown in fig-
ure 9), then it contains harmonics (multiples) of
the fundamental frequency with various amplitudes
and frequencies.

The waveform can be analysed to find the ampli-
tudes of these harmonics, and a list can be made of
their various amplitudes and phases. Alternatively
we can plot a graph (the spectrum) of the ampli-
tudes versus frequency, as shown in figure 10).

Mathematically we can express the signal as a
sum of these individual frequencies. sines and

1/ν0

Figure 9: A periodic Waveform

ν0 

−ν 

Figure 10: The spectrum of a periodic Waveform

cosines are needed to allow for the harmonics all
having different phases.

F (t) = a0 + a1 cos 2πν0t + b1 sin 2πν0t

+ a2 cos 4πν0t + b2 sin 4πν0t + · · ·

=

∞∑

n=−∞
an cos(2πnν0t) + bn sin(2πnν0t)

=
A0

2
+

∞∑

n=1

(An cos(2πnν0t) + Bn sin(2πnν0t))

In this last form we have use the property
cos(x) = cos(−x) and sin(x) = − sin(−x) to change
the sum to be between positive integers: An =
a−n + an and Bn = b−n − bn and A0 is divided
by 2 so we don’t count it twice.

The process of constructing a waveform by
adding together a fundamental frequency and its
harmonics of various amplitudes is called Fourier
Synthesis .

Fourier Analysis

Given a signal, we often want to extract from it
the various frequencies and amplitudes that are
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present. This is called Fourier Analysis . To find
these amplitudes we exploit the orthogonality prop-
erty of sines and cosines - that is if you take a sine
and a cosine, or two sines, or two cosines that are
multiples of a fundamental frequency, and integrate
them over one cycle of that fundamental period
then the result is always zero unless they are the
same. Mathematically, if P = 1/ν0 is one period

∫ P

t=0
sin(2πnν0t) sin(2πmν0t) dt

∫ P

t=0
cos(2πnν0t) cos(2πmν0t) dt

=

{
0, n 6= m
1

2ν0

, n = m
∫ P

t=0

sin(2πnν0t) cos(2πmν0t) dt = 0, always

Now if we take our signal function F (t), multi-
ply it by sin(2πmν0t) and integrate over a single
fundamental period we get

∫ P

0

F (t) sin(2πmν0t) dt =

∫ P

0

(

A0

2
+

∞∑

n=1

(

An cos cos(2πnν0t)

+ Bn sin(2πnν0t)

))

× sin(2πmν0t) dt

=

∫ P

0

Bn sin2(2πnν0t) dt

=
BmP

2

Similarly for cos(2πmν0t). That is all the terms
in the Fourier expansion vanish except that at the
frequency we multiplied it by. Therefore we can
determine the coefficients of the Fourier expansion
as follows

Bm =
2

P

∫ P

0

F (t) sin(2πmν0t) dt

Am =
2

P

∫ P

0

F (t) cos(2πmν0t) dt

Fourier Analysis of a periodic rectangular
waveform We shall now apply the principles of
Fourier Analysis to one of the simplest waveforms
- a rectangular Waveform of period

1/ν0

, pulse width b and pulse height h.
Since the function is zero outside the pulse width,

and has an amplitude h we can write the fourier
coefficient integral as

b

h

1/ν0

Figure 11: A rectangular waveform

Figure 12: Spectrum of a rectangular waveform

Am = 2ν0

∫ 1/2ν0

−1/2ν0

F (t) cos(2πmν0t)dt

= 2hν0

∫ b/2

−b/2

cos(2πmν0t)dt

Solving this integral gives the coefficients for the
cosine terms as

Am =
2hν0

2πmν0
[sin(πmν0b) − sin(−πmν0b)]

= 2hν0b
sin(πmν0b)

πmν0b

Since the function is even the sinusoidal coeffi-
cients will be zero. The power spectrum is there-
fore a set of delta functions spaced at ν0 with a sinc
envelope with a width of 1/b.

We can therefore rewrite this signal in terms of
the Fourier series below
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F (t) = hν0b+2hν0b

∞∑

m=1

[
sin(πmν0b)

πmν0b

]

cos(2πmν0t)

This spectrum clearly demonstrates a number of
important properties for Fourier transforms: the
higher the frequency of the signal, the closer to-
gether the spectral peaks; and the wider the wave-
form (pulse) the narrower the spectrum. See
Fourier Transform Properties (Section )

Complex Notation Usually when performing
Fourier analysis it is more convenient to use com-
plex exponentials to manipulate the formulae than
sines and cosines. Using the expression eiθ =
cos θ + i sin θ to change from sines to cosines to
complex exponentials we get the following for the
Fourier series

F (t) =
A0

2
+

∞∑

n=1

e2πinν0t(An − iBn)

=
A0

2
+

∞∑

n=1

e2πinν0tCn

Now we have a complex amplitude Cn represent-
ing both the amplitude Rn and phase φn of the
signal.

Cn = An − iBn = Rneiφn

Rn = |Cn|2 =
√

A2
n + B2

n

tan φn = −Bn

An

The inversion formula becomes

Cn =2ν0

∫ 1/ν0

0

F (t)ei2πν0tdt

=
ω0

π

∫ 2π/ω0

0

F (t)eiω0tdt

Fourier Analysis of non-periodic functions
So far we have looked at periodic functions which
can be expressed as a sum of harmonics of the fun-
damental frequency. If we increase the period of the
function then the fundamental frequency and thus

t −ν 

Figure 13: An illustration of the spectra corre-
sponding to non-periodic signals - an abrupt clash
like signal and a smooth pulse

the spacing between the harmonics will decrease.
A non-periodic function may be treated as the lim-
iting case where the period goes to infinity and the
spacing between the Fourier terms goes to zero. In-
stead of having a spectrum of discrete harmonics
the spectrum is a continuous function. Shown be-
low are examples of two non-periodic functions and
their spectra - an abrupt clash type signal and a
smooth pulse.

Mathematically the summation sign used when
expressing periodic signals as a sum of harmonics
is changed to an integral and we can write the func-
tion in terms of its spectrum as

g(t) =

∫ ∞

−∞
G(f)ei2πft df

As with the Fourier series we can perform the in-
verse process to determine the spectrum from the
signal itself.

G(f) =

∫ ∞

−∞
g(t)e−i2πft dt

These functions g(t) and G(f) are called a Fourier
Pair .

Fourier Transform If we have a function g(t)
then we perform the Fourier transform to calculate
its frequency spectrum G(f).

G(f) =

∫ ∞

−∞
g(t)e−i2πft dt (1)
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We perform the Inverse Fourier Transform to cal-
culate a function from its frequency spectrum

g(t) =

∫ ∞

−∞
G(f)ei2πft df (2)

The Fourier transform provides us with the link be-
tween the time domain and frequency (or spectral)
domain views of a signal. A signal is uniquely de-
fined by either representation.

If we calculate the energy of a signal the the re-
sult must be the same in either representation

E =

∫ ∞

−∞
|g(t)|2 dt =

∫ ∞

−∞
|G(f)|2 df (3)

The amplitude spectrum of a signal is defined by
the modulus of the complex spectrum |G(f)|

The energy spectral density is given by Eg =
|G(f)|2 in units of joules per hertz.

Dirichlet’s Conditions Not all functions are
Fourier transformable. Dirichlet’s Conditions are
the requirements on a function if it is to be trans-
formable. The Fourier Transform of a function g(t)
exists if

1. The function g(t) is single-valued, with a
finite number of maxima and minima in
any finite time interval.

2. The function g(t) has a finite number of
discontinuities in any finite time interval
(piece-wise continuous).

3. The function g(t) is absolutely integrable,
that is

∫∞
−∞ |g(t)| dt < ∞

In practice the Fourier transform exists for all sig-
nals which are physically realisable. In particular
condition 3 above holds for all energy signals. In
nature, these conditions seem to hold for all phe-
nomena which can be described mathematically.

Fourier Transform Properties There are sev-
eral theorems which are of great use in manip-
ulating Fourier-pairs, and they should be memo-
rised. The art of practical Fourier transforming is
in the manipulation of functions using these the-
orems rather than in doing extensive and tedious
elementary integrations. It is this, as much as any-
thing, which makes Fourier theory such a powerful

tool for the practical working scientist. Proof of
most of these properties is fairly trivial.

In what follows we assume the following Fourier-
pairs, g1(t) ⇔ G1(f) and g2(t) ⇔ G2(f).

Addition Theorem If we add two functions we
add their Fourier Transforms

c1g1(t) + c2g2(t) ⇔ c1G1(f) + c2G2(f)

Time Scaling Compressing a signal in time
causes a proportional increase in spectral
width. The spectral magnitude must decrease
proportionally as the two signal representa-
tions must have the same energy

g(at) ⇔ 1

|a|G
(

f

a

)

Duality If we know the Fourier transform of a
function then we also know the Fourier trans-
form of the Fourier transform

If g(t) ⇔ G(f) then G(t) ⇔ g(−f)

Time shift and Frequency Shift States how
the Fourier transform of a function changes
when we shift it in time or frequency

If g(t) ⇔ G(f) then g(t − t0) ⇔ G(f)e−2πift0

If g(t) ⇔ G(f) then g(t)e−2πif0t ⇔ G(f − f0)
(4)

There follows a number of important examples of
problems where these sets of properties are used to
make the calculations simple.

Fourier Transform Of A Rectangular Pulse
Shown in figure 14) is a rectangular pulse of ampli-
tude A and width T . Mathematically such a pulse
is written as Arect t

T

The Fourier transform of this function is then
given by
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g t( )

�-T/2 T/2

A

Figure 14: A Rectangular Pulse

G(f) =

∫ ∞

−∞
Arect

(
t

T

)

e−2πift dt

=A

∫ T
2

−T
2

e−2πift dt

where we have put the interval to be between
−T/2 and T/2 where the function is non-zero.
Solving the integral and putting in the intervals
gives

G(f) =A

[
e−2πift

−2πif

]T
2

−T
2

=A
e−πifT − eπifT

−2πif

=AT

(
sin(πfT )

πfT

)

=AT sinc(fT )

This is plotted in figure 15). We can therefore
say that these two functions are a Fourier transform
pair.

Arect

(
t

T

)

⇔ AT sinc(fT )

If we look at this Fourier transform pair of func-
tions we can immediately see an important general
relationship between pulse width in the time do-
main and bandwidth in the spectral domain - no-
tably they are reciprocals. That is the pulse width
is given by T while the width of the main peak in
the sinc spectral function is proportional to 1/T .
Therefore as the pulse width broadens in time the
spectral width proportionally decreases. This is
generally true, no matter what the pulse shape and
corresponding spectrum are.

G f( ) AT

0
1

T

2

T

3

T
−

1

T
−

2

T
−

3

T

Figure 15: Fourier Transform of A Rectangular
Pulse

g t( )
A

t

T

1

fc

Figure 16: A Pulsed Carrier

Assessment
Deadline: 2009-10-18 00:59:00
No Questions: 3
Time Allowed: 15 min

Fourier Transform of a Radio-Pulse A
modulated pulse is represented mathematically by

g(t) = Arect

(
t

T

)

cos(2πfct)

shown in figure 16). Remember that the cosine
function can be written as

cos(2πfct) =
1

2

(
e2πifct + e−2πifct

)

So our function becomes
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1.386a

Figure 18: A Gaussian

g(t) =
1

2
Arect

(
t

T

)
(
e2πifct + e−2πifct

)

The addition theorem allows us to split this into
two Fourier transforms, and the Frequency shift
Theorem 4) tells that the Fourier transform for each
part is simply that of the rectangular pulse shifted
by +fc or −fc so we have

G(f) =
AT

2
[sinc (T (f − fc)) + sinc (T (f + fc))]

as plotted in figure 17)

Fourier Transform of a Gaussian We now
turn ourselves to finding the Fourier transform of a
Gaussian function (figure 18))

G(t) = e−t2/a2

This involves what is probably the most difficult
integral we will need to do as part of the digital
modulation module.

a is the width parameter of the function and the
full width at half maximum (FWHM), commonly
used when referring to pulses is 1.386a.

The Fourier Transform integral of this function
is

g(f) =

∫ ∞

−∞
e−t2/a2

e2πftdt

We need to do a bit of rearranging of this integral
to make it solvable.

0.44/a

Figure 19: Fourier Transform of a Gaussian

Firstly we rearrange the exponent into the form
−(t/a − πifa)2 − π2f2a2

We then change variables, definingz = (t/a − πifa)) so
Definition]

that dt = adz

The integral then becomes

g(f) =ae−π2f2a2

∫ ∞

−∞
e−π2

dz

=a
√

πe−π2f2a2

where we have used the well known result
∫∞
−∞ e−π2/a2

dz = a
√

π
Thus the Fourier transform of a Gaussian of

FWHM 1.386a is also a Gaussian of width 0.44/a
as shown in figure 19).

Properties of the Delta function The prop-
erties of the Dirac delta-function are very useful
when working with Fourier analysis. This function
is defined by the properties

δ(x) = 0, x 6= 0

δ(x) = ∞, x = 0
∫ ∞

−∞
δ(x)dx = 1

Note that it disobeys Dirichlets conditions in that
is is unbounded at x = 0, however we can still deter-
mine its Fourier transform. If we take this function
as the limiting form of a Gaussian of unit area.
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Figure 17: Spectrum of A Pulsed Carrier

g(t) = lim
τ→0

1

τ
e−

πt2

τ2

As T goes to zero we have a Gaussian of decreas-
ing width and increasing height until it becomes
infinitely narrow and infinitely large in amplitude
yet still has unit area. The Fourier transform will
then be given by

G(f) = lim
τ→0

e−π2τ2f2

Which tends to a Gaussian of infinite width and
unit height. The Fourier transform of the delta
function is therefore unity.

δ(x) ⇔ 1

Similarly, if we have a constant signal then using
the principle of duality for Fourier Transforms the
spectrum must be a delta function.

The usefulness of the delta function is apparent
when we consider the following property.

Remembering that δ(x − a) = 0 unless x = a we
have

∫ ∞

−∞
F (x)δ(x − a)dx = F (a)

i.e. the delta function picks out a single value in
the integral. We thus get Fourier transform integral
for the complex exponential function as

t

0

g t t( ) ( )= δ
1

0

⇔
1)( =fG

f

1

0

⇔
g t( ) = 1

t

0

)()( ffG ∂=

1

f

Figure 20: Fourier Transform of a Delta Function
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∫ ∞

−∞
ei2πftδ(x − f0)dx = ei2πf0t

Which gives us the the Fourier transform pair

ei2πf0t ⇔ δ(f − f0)

This states that the complex exponential func-
tion ei2πf0t is transformed in the frequency domain
into a delta function at f0 It is just our old friend
the frequency shift theorem.

Fourier Transforms Involving The Delta
Function We can use the relationship derived
previously, (see 4)) to calculate the Fourier trans-
forms of sines and cosines by writing them in terms
of their complex exponentials. We thus obtain the
relationships shown in figure 21).

The Fourier transform of the cosine function is
a pair of delta functions at pmf0 and similarly for
the sinusoidal function we have the result in figure
22).

Now we can see how periodic signals, previously
described by discrete Fourier series can be repre-
sented using delta functions in Fourier Transforms.

Fourier Transforms of Periodic Signals We
have already seen how a periodic signal can be
represented in terms of the complex exponential
Fourier series Also Fourier transforms can be de-
fined for complex exponentials. Therefore it is not
unreasonable to suppose that a periodic signal can
be represented in terms of a Fourier transform con-
taining delta functions (the Fourier transform of
complex exponentials).

We can write a periodic function gT0
(t) in terms

of a generating function g(t) (the function repre-
senting one period only and zero elsewhere) as fol-
lows.

gT0
=

∞∑

m=−∞
g(t − mT0)

where T0 is the period. This periodic function
may be represented as a Fourier series

gT0
=

∞∑

n=−∞
cnei2πfnt

where the complex coefficients are given by

cn =
1

T0

∫ T0/2

−T0/2

gT0
(t)e−i2nπf0tdt

We can substitute the generating function in here
and change the limits to infinity since the generat-
ing function only has a nonzero value in the limits
−T0/2 to T0/2 The formula for the complex Fourier
coefficients then becomes

cn = f0

∫ ∞

−∞
g(t)e−i2nπf0tdt

Now the generating function g(T ) is Fourier
transformable, and so this integral corresponds to

cn = f0G(nf0)

were G(nf0) is the Fourier transform of g(T )
evaluated at frequency nf0. i.e. the values of the
complex coefficients in the Fourier series are the
same as the values the Fourier transform of the
generating function would have at the same fre-
quency. Substituting this into our Fourier series
expression we get the following expression for the
periodic function in terms of its Fourier series:

∞∑

m=−∞
g(t − mT0) = f0

∞∑

n=−∞
G(nf0)e

i2πf0t

and finally, using the result for the Fourier trans-
form of a complex exponential we have

∞∑

m=−∞
g(t − mT0) ⇔ f0

∞∑

n=−∞
G(nf0)δ(f − nf0)

or alternatively

GT0
(f) =

∞∑

n=−∞
cnδ(f − nf0)

This is a very important result, stated in words
it means

Periodicity in the time domain has
the effect of changing the frequency
domain or spectrum of a signal into a
discrete form defined at integer mul-
tiples of the fundamental frequency.
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t

g(t) = cos(2πf0t) = 1
2

(
ei2πf0t + e−i2πf0t

)

⇐⇒
−f0 f0

f

G(f) = 1
2 (δ(f − f0) + δ(f + f0))

Figure 21: Fourier Transform of a Cosine

t

g(t) = sin(2πf0t) = 1
2i

(
ei2πf0t − e−i2πf0t

)

⇐⇒ −f0

f0

f

iG(f) = 1
2i (δ(f − f0) − δ(f + f0))

Figure 22: Fourier Transform of a Sine
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Figure 23: Fourier Transform of a Periodic Waveform

t

System

h(t)

impulse response

f t t( ) ( )= δ g t h t( ) ( )=

t
Unit impulse

Figure 24: The Impulse Response

The impulse response of a system is defined as the response of the system (with zero
initial conditions) to a unit impulse or delta function d(t) applied to the input of the
system.
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The Impulse Response And Convolu-
tion

This idea arises in many applications - for example
the response of a lens to a point image (the point
spread function - in 2 dimensions), the response
of a spectrometer to a monochromatic source and
of course here we have the electrical response of a
system to a unit impulse. If the system is time-
invariant the it is the same no matter when the
impulse is applied to the system.

Now if we apply a general signal to the system,
what is its output going to be?

We can approximate the input signal f(t) by a
sum of pulses of width ∆t as shown in figure 25).
As ∆t tends to zero these functions will tend to
impulse functions times the amplitude of the sig-
nal. The output from the k th pulse at time k∆t
will given by f(k∆t)h(t−k∆t)∆t where h(t) is the
impulse response of the system i.e. the pulse will
spread out by the impulse response of the system.
As ∆t tends to zero these functions will tend to im-
pulse functions times the amplitude of the signal.
To find the signal amplitude we need to sum over
all the responses from all the pulses giving the Con-
volutional integral between the input signal and the
system impulse response

g(t) =

∫ ∞

−∞
f(t)g(t − τ)dτ = f(t) ∗ h(t)

This is often written in the second form since
convolution is an operator between functions much
like addition and multiplication. It is a very impor-
tant concept in many different areas of physics and
electrical engineering. In words we can say

The present value of the response of
a linear time-invariant system is the
weighted integral over the past his-
tory of the input signal, weighted ac-
cording to the impulse response of
the system.

Thus the impulse response acts as a memory func-
tion for the system

The Convolution Theorem

The Convolution Theorem is one of the most useful
results in Fourier Theory. It states that if G12(t) is

the convolution of G1(t) with G2(t) then its Fourier
pair g12(f) is the product of g1(f) and g2(f), the
Fourier pairs of G1(t) and G2(t). Symbolically

g1(f)g2(f) ⇔ G1(t) ∗ G2(t)

In words:

The multiplication of two signals in
the frequency domain is transformed
into the convolution of their individ-
ual Fourier transforms in the time
domain.

The importance of this should now become obvious.
If we have a linear system (such as a transmission
system or filter) and we want to calculate its re-
sponse we can either, in the time domain, calculate
the convolution between the impulse response of
the system and the incoming signal or we can, in
the frequency domain, multiply the frequency re-
sponse of the system with the spectrum of the sig-
nal. The latter is usually very much easier than the
former which is why we often work in the frequency
domain. Note that the inverse process is also true
due to the invertability of Fourier transforms - con-
volution in the frequency domain corresponds to
multiplication in the time domain.

If you recall the impulse response of a system is
the response to the unit impulse (See 24)). In the
frequency domain, the Fourier transform of the unit
impulse is a spectrum of unit amplitude, and the
frequency response of the system is therefore the
response of the system to that spectrum

If we apply a general signal then the response of
the system is the convolution of the signal with the
impulse response of the system. In the frequency
domain the response is the multiplication of the fre-
quency response of the system with the signal spec-
trum.

Proof of the Convolution Theorem Proof of
the convolution theorem is trivial. By definition we
can write

G12(t) =

∫ ∞

−∞
G1(λ)G2((t − λ)dλ

Taking Fourier transforms of both sides gives us

15



0

t

f(t)

f(k∆t)

∆t k∆t

Figure 25: Splitting a signal into Impulses
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f
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H(f)
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Figure 26: The Frequency Response

g12(f) =

∫ ∞

−∞
G12(t)e

2πftdt

=

∫ ∞

−∞

∫ ∞

−∞
G1(λ)G2(t − λ)e2πftdλdt

Now we can change variables, defining y = t − λ
which allows us to write this integral as

g12(f) =

∫ ∞

−∞
G12(t)e

2πftdt

=

∫ ∞

−∞

∫ ∞

−∞
G1(λ)G2(y)e2πf(y+λ)dλdy

This integral is separable and so we finally get the
result proving the convolution theorem

g12(f) =

∫ ∞

−∞
G2(y)e2πfydy

×
∫ ∞

−∞
G1(λ)e2πfλdλ

=g2(f)g1(f)

Convolution: Graphical Interpretation

Here I am going to try and illustrate graphically
what the convolution integral is. We are going to
use two functions f1(t) and f2(t) both of which are
a ramp function.

The convolution integral is g(t) =
∫∞
−∞ f1(t)f2(t − τ)dτ Firstly you will notice

that the variable of integration is τ and that we
are performing the integral of f2(t − τ) so we need
to reverse this function in time. Now this integral
is a function of t and as we change τ we are sliding
function f2(t − τ) past f1(τ) as τ increases.

We are multiplying the two functions together
and then integrating. The integration corresponds
to finding the area under the product of the two
function - it is a measure of the amount of overlap
between them which will change as the delay be-
tween the functions changes. Obviously it is zero
when the two functions don’t overlap and is a max-
imum when they have maximum overlap.

This integral it therefore a function of t as illus-
trated below.
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Figure 27: Convolution τ = 0
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Figure 28: Convolution τ = 0.5
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Figure 29: Convolution τ = 1
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Figure 30: Convolution τ = 1.5
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Figure 31: Convolution τ = 2

Ideal Filters

seen how the response of a system can be repre-
sented either by its frequency response H(f) or by
its impulse response in the time domain h(t) In
communication systems we often wish to use filters
with a designed response, for example to eliminate
noise or compensate for imperfections in the trans-
mission process.&nbsp; Generally the frequency re-
sponse is used in describing such systems since we
can calculate the overall response of a system us-
ing multiplications of the frequency response func-
tions. In the time domain we would have to perform
convolutional integrals which are much harder. In
the system shown above we have an input signal of
spectrum F (f) being operated on by a filter H(f)
to produce an output G(f) We can write the out-
put in terms of the input and the system response
simply as

G(f) = F (f)H(f)

Note that these are complex response functions.
We can separate them into amplitude and phase
components giving the expression

|G(f)|eiφG(f) = |F (f)|eiφF (f)|H(f)|eiφH(f)

where |H(f)| etc are the real amplitude responses
and φH(f) are the phase components of the re-
sponses. From this we obtain the separate expres-
sions for the amplitude and phase responses

|G(f)| = |F (f)||H(f)|

φG(f) = φF (f) + φH(f)

i.e. we multiply the amplitude responses and add
the phase responses.

If we want distortionless transmission through
the filter then the output must have the same shape
as the input, however it may be delayed in time and
may have a different amplitude i.e. for distortion-
less transmission

g(t) = Kf(t − t0)

Taking Fourier transforms of this expression we
obtain

G(f) = KF (f)e−i2πft0

Therefore we have for the response of an ideal
filter, i.e. one which doesn’t distort the signal

H(f) = Ke−i2πft0

The filter has a constant amplitude and a phase
which varies linearly with frequency. Such a filter
is not very interesting, filters which are interesting
will limit the frequency range. They can be classi-
fied into 4 types as shown in the graphs here where
I have plotted both the amplitude and phase re-
sponses of the ideal filters. A low pass filter only
transmits frequencies below a certain value, the op-
posite is a high pass filter which only transmits a
frequency above a certain value. We may also have
a bandpass or bandstop filter which transmits or
block frequencies inside a certain range. In all cases
the bandwidth of the filter is given as W. Firstly
you will see that all these ideal filters have a con-
stant amplitude inside their pass regions. They also
have a linear variation of phase with frequency.

Decibels And Bandwidth

As already pointed out, in general the transfer func-
tion of a linear time-invariant system is a complex
quantity and can be written in the form
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Figure 32: Ideal Filters
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H(f) = |H(f)|eiφ(f)

In many applications it is preferable to work with
the logarithm of H(f) expressed in polar form. We
define

lnH(f) = α(f) + iβ(f)

where the system gain in nepers is given by

α(f) = ln |H(f)|
and the phase β(f) is in radians.
More commonly units of decibels (dB) are used,

where the gain of the system is then defined by

α′(f) = 20 log10 |H(f)|
The relationship between the gain in decibels and

the gain in nepers is then

α′(f) = 8.69α(f)

Often when we talk about the bandwidth of the
system response we mean the distance between the
points where the amplitude response has fallen off
by 1/2 (the full-width at half max (FWHM) band-
width or -3dB)

Assessment
Deadline: 2009-10-18 00:59:00
No Questions: 1
Time Allowed: 3 min

Causality And Stability

A system is said to be causal if it does not respond
before the signal is applied. For a linear time-
invariant system it is clear that this means that
the impulse response h(t) must vanish for negative
time.

h(t) = 0, t < 0

Obviously a system operating in real-time must
be causal. We have already seen how the ideal low-
pass filter is non-causal and therefore not physi-
cally realisable since its impulse response is a sinc
function which extends to negative time. How-
ever in applications where the signal is stored be-
fore processing the response may be noncausal and

�
tT 2− T 2

Figure 33: A Rectangular Pulse

yet physically realisable. Storing the signal can be
thought of as delaying it - the more of the signal
we store the longer it is delayed and the more of
the leading part of impulse response we can repre-
sent. In terms of our low pass filter, the more we
delay the signal the more of the leading edge rip-
ples of the impulse response we can represent, the
sharper the filter cut off and&nbsp; and the closer
we can approach the ideal response. This is gener-
ally true - the more we delay a signal in the filter
the sharper the features in the spectral response we
can represent. Infinitely sharp features would how-
ever require that we delay the signal for infinitely
long.

A second requirement we place on a system is
that of stability by which we mean that the out-
put is bounded for all input signals. This is called
the bounded input-bounded output (BIBO) stability
criterion. An input signal is bounded if

|x(t)| ≤ M

where M is a positive real finite number. The
output, for a linear time-invariant system, is given
by the convolutional integral which, if we substitute
in the input above becomes

|y(t) ≤ M

∫ ∞

−∞
|h(τ)|dτ

It follows that we require this to be bounded and
therefore we find that the impulse response must
be absolutely integrable.

∫ ∞

−∞
|h(τ)|dτ < ∞
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Figure 34: The Sine Integral Function

Pulse Response of an Ideal Low-pass
Filter

We have already seen that the impulse response of
the ideal low pass filter is given by

h(t) = 2W sinc (2W (t − t0))

Now we want to calculate the response of such
a filter to a rectangular pulse as shown right. To
do this we perform the convolutional integral giving
for the output of the low pass filter (replacing limits
with those of the pulse). To simplify the calculation
we have set t0 = 0 without loss of generality.

y(t) = 2W

∫ T/2

−T/2

sin (2πW (t − τ))

(2πW (t − τ))
dτ

To solve this integral we shall change variables
putting λ = 2πW (t − τ)

Giving us

y(t) =
1

π

∫ 2πWt+T/2

2πWt−T/2

sinλ

λ
dλ

=
1

π








∫ 2πWt+T/2

0

sin λ

λ
dλ

−
∫ 2πWt+T/2

0

sinλ

λ
dλ








=
1

π
[Si(2πWt + T/2) − Si(2πWt − T/2)]

The solution involves the sine integral function
defined by

1 0 1

0

1
B=5T
B=T
B=T/5

t/T

��

Figure 35: The Rectangular Filter Response

Si(x) =

∫ x

0

sinλ

λ
dλ

We cannot write this integral in terms of other
functions, it has to be calculated numerically (or
looked up in tables). It is shown graphically in
figure 34).

Our response is therefore made up of the differ-
ence between two sine integrals - one corresponding
to the leading edge and one to the trailing edge.
The exact form depends on the filter bandwidth ,
and in figure 35) it is plotted for 3 different ratios
of bandwidth to pulse width.

If the bandwidth is very narrow (the green line)
we see that the output is spread out over a long
time. If the output equals the bandwidth (the blue
line) the output shape is slightly broadened. In
most cases the bandwidth of the filter will be much
broader than this (the red line).

Those of you who have ever looked at the re-
sponse of a pulse on an oscilloscope will be familiar
with this shape. Important points to notice are that
there is overshoot (of about 9% usually) and under-
shoot, and there are oscillations in the response.
This is called Gibbs Phenomena . The period of
these oscillations is proportional to the reciprocal
of the filter bandwidth.
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Figure 36: Heterodyning (sine wave)

Frequency Translation

As discussed earlier one of the important reasons
for modulation is to carry out frequency transla-
tion. We take a signal and a carrier and multiply
them together to produce a mixing or heterodyne
signal. For a sinusoidal signal we have

fm(t)
︸ ︷︷ ︸

signal

=Am cos ωmt

fc(t)
︸︷︷︸

carrier

=Ac cos ωct

fm(t)fc(t)
︸ ︷︷ ︸

heterodyning or mixing

=
AmAc

2
[cos(ω+ωm)t + cos(ω0ωm)t]

Looking at the spectrum (figure 36)), we the si-
nusoidal signal has two delta functions at ±fm.
Multiplying this by the sinusoidal carrier produces
the sum and difference frequencies - a total of 4
peaks in the double sided spectrum. One way of
looking at this is that we have taken the original
spectrum and shifted it up to the carrier frequency.

A common mistake that is made is to forget that
the spectrum is double sided - has both positive and
negative frequencies. This is because quite often
instruments (such as the spectrum analyser) only
plot the positive half of the spectrum. For real sig-
nals, the amplitude spectrum is symmetric, and the
phase spectrum is anti-symmetric, and so there is

0 fc-fM fc+fM-fc+fM-fc-fM -fc fc

f

f

spectral amplitude

0 fM-fM

non-sinusoidal 
periodic signal

Figure 37: Heterodyning (non-sinusoidal periodic)
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lower 
sideband

f

f
0 fc-fM fc+fM-fc+fM-fc-fM -fc fc

spectral amplitude

0 fM-fM

Figure 38: Heterodyning (aperiodic)

no need extra information negative half of the spec-
trum. On such a spectrum analyser we would only
see a single peak for the signal sinusoidal frequency.
However when we multiply this signal by the car-
rier we shift the entire spectrum up by the carrier
frequency and so we see two peaks in the spectrum.

This principle of course applies for general signals
so for a periodic non-sinusoidal signal we have a
spectrum made up of a set of discrete frequencies
separated by the period of the signal. Heterodyning
this with a sinusoidal carrier shifts the entire double
sided spectrum as shown here.

And similarly for a general aperiodic signal which
has a continuous spectrum. Another important
point to note about this process is that we effec-
tively see a doubling of the bandwidth of the signal
as when heterodyning we see both halves of the
original spectrum at positive frequencies.

Another important aspect of frequency transla-
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tion is that our analysis for the ideal low pass filter
can also be applied for bandpass filters since they
are equivalent except for the frequency translation
of both signal and filter. Haykin deals with prov-
ing this is some detail. The most important thing
to remember is that there is a factor of 2 differ-
ence in the bandwidth definition between the two,
and this must be taken into account in the calcu-
lations. In particular we can represent a bandpass
filter response H(f) in terms of an equivalent low
pass transfer function as follows

H̃(f − fc) = 2H(f), f > 0

i.e. we take the part of the passband transfer
function corresponding to positive frequencies, shift
it to the origin and multiply by 2.

Phase And Group Delay

When a signal is passed through a dispersive
(frequency-selective) device some delay is intro-
duced. In an ideal low-pass filter the phase response
varies linearly with frequency and a constant delay
is introduced.

To start with we will consider a frequency which
suffers a phase shift total of β(fc) radians. The
equivalent delay suffered will simply be given by
β(fc)/ωc seconds. The is called the phase delay of
the channel. This is not necessarily the true delay
of the channel - after all a sinusoidal signal carries
no information. We must modulate the sinusoid to
carry information, and it is the delay of the mod-
ulating envelope that we are often really interested
in. This delay is called the envelope or group delay
of the channel.

In general the phase response of our dispersive
channel is a function of frequency, i.e. we have
β(f). An example is plotted in figure 39).

Here I am going to show what I hope is a simple
way of viewing the group delay. Haykin does a more
complete calculation. We are going to a consider a
signal consisting of two sinusoidal components sep-
arated by a small frequency step δω Thus we have
at the input

cos ωt + cos(ω + δω)t

= 2 cos

(
δω

2
t

)

cos

(

ω +
δω

2
t

)

β

δβ
δω

β, δβ
δω

ω

Figure 39: Group Delay

Figure 40: Group Delay Envelope

where we have rewritten the input in terms of the
envelope component at frequency δω and a carrier
frequency component.

At the output of the channel or system we have
a delay of β for frequency ω and a delay of β + δβ
for frequency ω + δω giving the output signal as

cos(ωt − β) + cos ((ω + δω)t − (β + δβ))

= 2 cos

(
δω

2
t − δβ

2

)

cos

{(

ω +
δω

2

)

t −
(

β +
δβ

2

)}

Again we have separated the output into the enve-
lope and carrier. Comparing the envelope compo-
nent at the output with that at the input we see
that it has a phase delay of δβ and is at frequency
δω so the group delay is given by

tg =
δβ

δω

More generally if we have a more complex sig-
nal we need to consider the relative relationship
between all the frequency components. Clearly if
there is to be no distortion the relative delay be-
tween all the components must be the same i.e.
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the derivative of the phase with frequency must be
a constant.

Assessment
Deadline: 2009-10-18 00:59:00
No Questions: 3
Time Allowed: 10 min

Pulse Modulation

If we use a pulse carrier to effect communications
then one of several parameters of the pulse train
may be varied in proportion to the message sig-
nal. We can distinguish between two types of pulse
modulation scheme:

1. analogue pulse modulation

2. digital pulse modulation

Analogue Pulse Modulation Schemes

In analogue pulse modulation, the carrier is a a pe-
riodic pulse train and we may continuously vary
the pulse amplitude, pulse width, pulse frequency
or the position of each pulse in its time slot in pro-
portion to the sampled messages of the message
waveform. In each of these cases the informationn
is carried in analogue form although the transmis-
sion takes place at discrete intervals of time. Ex-
amples of these modulation formats are illustrated
in figure 41).

Pulse Amplitude Modulation (PAM) This
may be considered to be the pulse carrier
equivalent of DSB-SC amplitude modulation
although it is not exactly equivalent as may
be seent when we look at the difference be-
tween Natural Sampling (Section ) and Pulse
Amplitude Modulation (Section ) sampling.

Pulse Width Modulation (PWM) The width
(duration) of each carrier pulse is varied ac-
cording to the amplitude of the message signal.
Signal recovery is easily acheived by low pass
filtering.

Pulse Position Modulation (PPM) The posi-
tion of each carrier pulse within its time slot of
width T is varied. Signal recovery is acheived

by measurement of the time interval between
this pulse and a regular clock pulse train oper-
ating at rate 1/T .

Pulse Frequency Modulation (PFM) This is
directly equivalent to FM. The pulse repeti-
tion frequency is varried in porportion to the
message signal samples; signal recovery is as
for FM. PFM is used in low-cost, high per-
formance analogue communications using fibre
optics where nonlinearities in the transfer char-
acteristics of optical sources impair the perfor-
mance of PAM.

Nyquist Sampling Theorem

From what we have learn’t in the tutorial on mod-
ulation basics we know that if we sample a signal at
regular instants in time we are going to produce a
periodic spectrum. Nyquists theorem is concerned
with knowing how often we sample the signal to
that we can reproduce it witout distortion. If we
have a signal strictly bandlimited to bandwidth W
and at regular intervals seperated by T seconds
(rate 1/T ) then the resulting spectrum is going to
be copys of the spectrum seperate by 1/T Hz as
shown in figure 42).

Note that because we are modulating the origi-
nal signal we see its whole double sided spectrum
of width 2W copied at frequency intervals of 1/T .
Therefore we see that if T ≤ 1/(2W ) these mul-
tiple copies of the signal spectrum are completed
seperated, and we could filter out one to regener-
ate the original signal without distortion. However
if we sample at too low a rate, T > 1/(2W ) then we
see that there is overlap between the copies in the
sampled spectrum and there would be distortion in
the recovered signal. Therefore we can state the
requirements for sampling, the Nyquist Sampling
Theorem as follows:

Important

A band-limited signal of finite energy, which

has no frequency components higher than

W Hz is completely described by sampling

values of the signal at instants of time sep-

arated by 1/2W seconds.

If we do not satisfy this criterion we cannot recover
the original signal. In particular we may see fre-
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quency components which do not exist in the orig-
inal signal. This is called aliasing. For example if
we have a 4 kHz input signal and sample at a rate
of only 5kHz we will see frequency components at
(5+4)=9kHz which is removed by a low pass filter
and at (5-4)=1kHz which isn’t i.e. we will see a
1kHz signal after low pass filtering a 4kHz signal
sampled at only 5kHz.

An example, which you may see in the labora-
tory, is that when using a digital sampling oscillo-
scope which has too low a sample rate (i.e. with a
low time base set) and we look at high frequencies.
We may actually see low frequency aliased signals
which are not present at the input to the oscillo-
scope. Care must therefore be taken when using
such instruments - in particuar if the frequency of
the signal you are measuring changes as you change
the timebase (sample rate) then it is probably os-
cilloscope aliasing that you are seeing.

Assessment
Deadline: 2009-10-31 23:59:00
No Questions: 1
Time Allowed: 5 min

Natural Sampling

In natural sampling a bandlimited signal f(t) is
multiplied by a rectangular pulse train p(t) (the pe-
riodic gate function) with period T (the sampling
period) to give the sampled signal fs(t) = f(t)p(t).

We start with the information signal which is
smooth in time and has a limited bandwidth.

Our gate function is a rectangular pulse train
which has a spectrum which is the sinc function
evaluated at multiples of the repetition frequency.

Now we multiply these together (in the time do-
main). The resultant is the convolution of the two
spectra in the frequency domain, which is particu-
larly easy to evaluate due to discrete nature of the
sampling spectra. It is the signal spectrum, repeted
at multiples of the sampling frequency and multi-
plied by the amplitude of the sampling spectrum
at those points. Natural sampling is characterised
by sampling pulse tops which precisely follow the
variations in f(t).

The original signal can be recovered simply by
applying a low pass filter to select only the base-
band component of the spectrum which is the same

as the signal spectrum. It is clear that we do not
need to use rectangular pulses at all as selection of
the sampling pulse shape serves only to specify the
shape of the envelope of Fs(ω) which won’t affect
the result after filtering.

Pulse Amplitude Modulation

In pulse amplitude modulation the sample pulses
are flat topped, and so, in contrast with natural
sampling, do not follow the variations of the signal
being sampled. The digital circuit used to achieve
PAM is referred to as sample and hold and it com-
prises two operations: the instantaneous sampling
of the message signal f(t) followed by lengthening
the duration of each sample to a constant value τ
. The value of τ is chosen to reduce the bandwidth
requirements: if it is too short the transmission
would require excessive bandwidth. It is impor-
tant to note the distinction between this process
and natural sampling.

In the case of flat-topped sampling our input sig-
nal is the sampled at discrete points in time so
its spectrum is the baseband spectrum repeated at
multiples of the sampling frequency as shown in
figure 46).

The next step in the process is the hold operation
which amounts to passing these samples through a
filter to acieive the required rectangular pulse shape
- a filter with a rectangular impulse response q(t).
This hold function is illustrated in figure 47). Its
spectrum is Q(ω)

The output of this filter is the convolution of the
samples with the rectangular hold function which
corresponds to the multiplication of the two spectra
as shown in figure 48).

This spectrum differs from the naturally sampled
one, the PAM output spectrum is obtained by mul-
tiplying together two frequency functions and the
original form of F (ω) is not maintained - the repli-
cas are not true replicas of the signal spectrum.

If we were to pass this signal through a low pass
filter as we did for the natural sampling case we
would obtain the spectral output which is F (ω).
The way around this is to pass the recovered sig-
nal through another filter, with a transfer function
1/Q(ω). This is referred to as equalisation, and
the additional filter is an equaliser. The impor-
tance of the hold time τ should now be clear. If
we use a shorter hold time τ then its spectrum will
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Figure 43: Information Signal for Natural Sampling
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Figure 44: Gate Function for Natural Sampling
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broaden and become flatter and the distortion pro-
duced on the received spectrum would be reduced.
It is found that if the ratio of sample time to sample
period τ/T ≤ 1, the maximum difference between
the equaliser transfer function 1/Q(ω) and the ideal
low pass filter is <1% in which case an additional
equalisation filter is usually considered unnecessary.

Why are flat topped pulse so important when a
naturally sampled signal is recoverable without dis-
tortion by low pass filtering. The reason is that the
need to preserve the sampled pulse shapes in trans-
mission conflicts with the basic advantages of digi-
tal communications. In transmission over distances
which require mid-path amplification, the effects
of additive noise would make the natural sampling
format no better than analogue. When the pulse
shape is not important, as with flat-toped sampling
used in PAM, repeaters may be use to regenerate
rather than amplify the signal giving giving more
robustness in the presence of noise.

If the sampling pulse is very much smaller than
the sampling interval then the signal power at the
output low pass filter (LPF) at the receiver may
be very small, requiring large amounts of ampli-
fication. An efficient way around this is to use
a sample-and-hold circuit at the receiver, as illus-
trated in figure 49). In this circuit the switched is
closed for the duration of the sample pulse. If the
source impedance Rs is small the capacitor charges
to the input voltage level within the sample time.
Between samples the switch is opened. If the load
resistance R is large the capacitor will retain its
voltage between samples until the switch is closed
again.

The output of the sample and hold circuit is
therefore as shown: smoothing is obtained by pass-
ing the signal through a LPF. The sample and hold
is a reliable and efficient PAM demodualtor with
good noise immunity and removes the need for large

t

T
T

sT
T

s
T

s

Figure 51: A Time Division Multiplexed Signal

amounts of equalisation. Note however that equli-
sation is required since the output of the sample
and hold circuit is effectively long flat-topped sam-
ple pulses.

Time Division Multiplexing

With relatively short sampling pulses PAM signals
occupy only a small fraction of the sampling in-
terval, and room is left between pulses into which
samples from other signals can be insereted. This
technique of combining pulses from N independant
channels in a definite time sequence is referred to
as time division multiplexing (TDM) . The principle
can be applied to most pulse modulation formats.
It is illustrated in figure 50) for PAM signals.

Each of the N message signals is band limited by
passing it through a low-pass filter (LPF). The fil-
tered signals are passed to a commutator, which,
in practice, constructed from high speed digital
switches but can bethought of as a rotating switch
which sequentially switched to the output of each
LPF. The commutator takes a narrow sample of
each of the N signals at the sampling rate f = 1/T
at least equal to twice the LPF bandwidth as re-
quired by the sampling theorem. It also interleaves
the N samples within the sampling interval T . In
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figure 51) the result of this process is shown for 2
signals. In the PAM case the TDM output pulse
train so obtained is transmitted; for other pulse
modulation formats a further pulse modulator may
be used. At the receiving end of the channel the
TDM signal passes through another commutator
which sequentially distributes the pulses to each of
N outputs where each message is recovered by low
pass filtering. The second commutator must oper-
ate in complete synchronism with the first.

Note that the channel bandwidth Bc required to
pass the TDM signal must also satisfy the Nyquist
condition. Thus the N interleaved pulse trains con-
stitute a single pulse train with separation Ts =
T/N . The sampling theorem requires Bc ≥ 1/2Ts

in order to prevent information loss. The TDM
signal can, in effect, be filtered to Bc (low pass fil-
tered) yet still permit separation of the constituent
messages by resampling at the receiver using, for
example, the sample and hold circuit (See 49)).

PPM and PWM Generation

Both pulse position modulation (PPM) and pulse
width modulation (PWM) signals can be generated
using the scheme shown here.

The input signal is fed through a sample and hold
circuit. Each of the samples is added to a sawtooth

waveform generated synchronously to produce the
sum waveform shown in figure 52). This waveform
is sent to a comparator with a threshold set, as
indicated by the blue line on the sum waveform.
The incoming amplitude , when added to the saw-
tooth, will cause a change in the time where the
sum waveform crosses the threshold. Therefore the
the amount of time spend above threshold will de-
pend on the signal amplitude, and we have pulse
width modulation. With PWM, the information is
actually contained in the relative positions of the
pulse edges. Consequently, the longer pulses ex-
pend significant amounts of power which is not car-
rying information. The PPM signal is produced by
triggering a pulse generator on the falling edge of
each PWM pulse to generate a pulse of constant
width. Note that although PPM is generally an
efficient analogue pulse modulation scheme it does
require a local generation of the clock timing since,
in contrast to PAM and PWM which carry clearly
recognisable clock timing, the timing is lost.

Since the PPM system is band limited, it must
have a finite rise time and this must place un-
certainty in the determination of the input signal
which must be proportional to the rise time of the
system, inversely proportional to its bandwidth.
The uncertainty in the system is referred to as the
resolution. Note, the resolution only has a meaning
in a system subject to noise and distortion since
otherwise a given point on the rise time charac-
teristic will always correspond to the same relative
timing instant. Generally the accepted criterion for
specifying the resolution of a PPM system equates
to the rise time. It follows that any two pulses in
a PPM train must always be separated by at least
the width of the system impulse response.

Pulse Code Modulation (PCM)

The previous pulse modulation techniques are ana-
logue in that even though the signal is sampled at
discrtet intervals of time its amplitude is transmit-
ted as an analogue parameter of the pulse wave-
form. The signal amplitude may itself be quantised
as shown in figure 54). The available amplitude
range is divided into a number of discrete amplitude
intervals and the signal represented by the quan-
tised level nearest to the true amplitude value at
each sampling instant. This forms quantised PAM
(QPAM) or M -ary PAM where M is the number of
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levels. To achieve digital pulse transmission a code
is assigned to each assigned level and codes corre-
sponding to the quantised signal at each sampling
instant are transmitted as a pulse stream. This the
basis of Pulse Code Modulation , the advantages of
which are as follows:

1. Digital transmission provides robustness
against noise and interference

2. PCM signals can be regenerated at inter-
mediate repeaters.

3. Modulating and demodulating circuits are
entirely digital offering compatibility with
VLSI: high reliability and low cost

4. Signals can be stored in memory; digital
signal processing operations such as time
scaling can be easily performed

5. Encryption using special codes can allow
secure communication

6. Source coding may be used to avoid un-
necessary repetitions of frequent message
components

Various coding formats may be used in practice;
for the time being we shall assume that the sig-
nal quantised levels are transmitted as binary digits
(bits); the the number n of bits required to repre-
sent any single sample is

N = log2 M

where M = 2n is the number of quantisation
levels. The overall transmission rate R is then given
by

R = log2 M × sampling rate bit/sec

In early PCM systems for telephony, 128 am-
plitude levels where considered adequate requiring
7 bits/sample. One extra supplementary bit was
added to give 8 bits/sample. With the upper fre-
quency limit for speech of 3.4kHz, sampling 8kHz is
adequate to satisfy the sampling theorem (allowing
for non-ideal filtering); thus, the overall bit rate for
each speech channe is established to be 64 kbit/s.
Later practice used 256 levels giving n =8 but the
supplementary bits where transmitted seperately so

NRZ coded PCM signal with 7-bit samples

1011001 1110011 0101010

framing bit

Figure 56: NRZ coded PCM signal with 7 bit sam-
ples

the basic octet structure was retained. For high-
fidelity sound, n =16 bits are used i.e. 65536 lev-
els.

Assessment
Deadline: 2009-10-31 23:59:00
No Questions: 1
Time Allowed: 10 min

PCM Transmission

There are three steps in PCM generation (1) sam-
pling, (2) quantisation and (3) encoding as illus-
trated in figure 55). In (1) the message is sam-
pled using a train of narrow pulses to closely ap-
proximate the instantaneous sampling process, at
a rate > twice the highest frequency in the mes-
sage. In practice an anti-aliasing filter is used to
exclude unwanted frequencies at greater than half
the sampling rate. In (2) the sampled version of
the signal is quantised: this process may use uni-
form or non-uniform sampling intervals. In (3) each
quantised sample is converted to a coded bit se-
quence: a choice of binary or tertiary codes may be
used. Functions (2) and (3) together can be per-
formed by an analogue-to-digital converter (ADC).
The encoded bit sequence may then be transmitted
serially as shown in figure 56).

The first element in the PCM receiver (figure 57))
is a regenerator which performs three functions:
equalisation, retiming and thresholding. Equalisa-
tion compensated for known amplitude and phase
distortion in the channel. Retiming is performed
using a locally generated clock, at a frequency ex-
tracted from the incoming signal, to sample the
equalised signal at instants of maximum SNR. In
the thresholding operation decisions are made as
to whether the incoming bit is a 1 or a 0 and a
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new noise-free pulse generated according to the out-
come. Thus noise on the incoming signal is com-
pletely removed. This signal may then be decoded
and fed to a filter to regenerate the original message
signal.

Quantisation

Quantisation converts a continuous input signal
f(t) into a discrete-valued approximation fQ(t).
The quantisation error is defined by ǫ(t) = f(t) −
fQ(t) and clearly must lie in the range −∆/2 <
ǫ < ∆/2 where ∆ is the quantisation interval (see
Figure 58)). Thus the magnitude of the worst case
quantisation error is ∆/2. At the receiver this un-
certainty is similar to that produced by an additive
noise source and hence the effect is referred to as
quantisation noise . Figure 59) shows plots of a
signal, the quantised signal and the resulting quan-
tisation noise.

Since ǫ is actually a voltage the quantisation
noise power will just be its variance (mean square
value) given by

ǫ2 =

∫ ∞

−∞
ǫ2p(ǫ)dǫ

If we assume that all the values in the range
−∆/2 < ǫ < ∆/2 are equally probable for any sam-
ple then the probability density function is given
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Figure 59: Quantisation

by p(ǫ) = 1/∆ thus the quantisation noise power is
given by

ǫ2 =

∫ ∆/2

−∆/2

ǫ2dǫ

=
1

∆

[
ǫ2

3

]∆/2

−∆/2

=
∆2

12

If we have a signal that occupies the entire quan-
tised range, the peak signal amplitude is M∆/2
where for a binary signal M = 2n then the signal
to quantisation noise (power) ratio is given by

(SNRQ)peak =
(M∆/2)2

∆2/12
= 3M2 = 3 × 22n

or in units of dB

(SNRQ)peak =10[log10 3 + 2n log10 2]

=4.8 + 6n dB

Now if the input is sinusoidal and occupies the
full quantiser range, the average signal power is
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(M∆/2)2/2 and the mean signal-to-quantisation
noise (power) is then given by

(SNRQ)mean =10 [log10 1.5 + 2n log10 2]

=1.76 + 6n dB

Note that the SNRQ increases by 6 dB for each
additional bit used to quantise the signal.

The error signal, as shown in figure 59), is ap-
proximately a sawtooth of period 1/fs where fs

is the sampling frequency. As the sampling fre-
quency is increased the frequency of the error signal
also increases however the power is fixed by equa-
tions above. Therefore with increasing frequency
the noise power is spread over a broader bandwidth
and there is less noise power occupying the same
bandwidth as the signal. The noise power at the
output of a bandpass filter will therefore decrease
as the sampling frequency is increased. Thus over-
sampling a band limited waveform will increase the
SNRQ at the output of a reconstruction filter. This
principle is used for advantage in compact disc play-
ers for example.

Assessment
Deadline: 2009-10-31 23:59:00
No Questions: 1
Time Allowed: 5 min

Companding

When considering quantisation signal to noise we
assumed that the signal fully occupies the encoder
range. The SNRQ will be considerably lower for
a weaker signal. If we vary the step size making
it smaller for low levels and larger near the maxi-
mum input level then the SNRQ can be made con-
stant over as wide a range of input values as possi-
ble. This is referred to as companding, compressing
the signal then encoding it in a linear encoder and
ex panding the decoded signal with the inverse of
the compression characteristic. Since the SNR in-
creases with M2 we ideally would require that the
amplitude step size decreases in the form

dVout

dVin
= k/Vin

Integrating this gives the ideal compression char-
acteristic as

1/A
1-1 0

-1/A

Vout

Vin
1/A

1-1 0

-1/A

Vout

Vin

Figure 60: A-law compression characteristic

Vout

Vin

Increasing A

Vout

Vin

Increasing A

Figure 61: Variation of A-law characterstic with A

Vout = 1 + k lnVin

Unfortunately this characteristic is not practical
as Vout → −∞ as Vin → 0. Instead two practi-
cal characteristics are used. These are the µ -law
characteristic used in North America

Vout =
ln(1 + µVin

ln(1 + Vin)
, 0 ≤ |Vin| ≤ 1 (5)

and the A law characteristic used in Europe

Vout = AVin

1+ln A 0 ≤ |Vin| ≤ 1
A linear region

Vout = 1+ln(AVin)
1+ln A

1
A ≤ |Vin| ≤ 1 logarithmic region

(6)
A is known as the compression coefficient. The

linear region ensures Vout = 0 when Vin = 0 and
the logarithmic region is specified so |Vout| = 1
when |Vin| = 1. The characteristic is continuous
at |Vin| = 1/|. For large values of A the character-
istic is predominantly logarithmic and the SNRQ

is approximately constant. This is illustrated fig-
ure 61).
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Figure 62: A-law SNR characteristic

In figure 62) we show a plot of the quantisation
SNRQ for the companding case (red) compared to
the case without companding (blue). The improve-
ment in SNRQ for low signal levels is clear. The
linear part of the characteristic causes a drop by
2dB in the SNRQ for input levels below 1/A. The
system is designed so the rms. value of the small-
est signal is equal to 1/A. The SNRQ is a func-
tion of both A and M which are chosen to give ac-
ceptable performance over a desired dynamic range
(ratio between strongest and weakest signal). The
CCITT recommended value of A is 87.6 which gives
a useful volume range (UVR) of 26dB. This value
with an 8-bit code gives an SNRQ of 38 dB. An
equivalent linear encoder would require 12-bits to
have the same performance so companding is effec-
tively a bit reduction technique which reduces the
required transmission bandwidth by 33%.

In practice coders use linear quantisation with
different step sizes over segments of the compres-
sion characteristic, as illustrated in figure 63). This
is technologically easier to realise. 14 segments are
used, 7 for positive values and 7 for negative values.
The step size in segment 7 is 56 times that in seg-
ment 1 giving the characteristic shown above. The
total number of input levels is 213. In segment 1
64 input levels are mapped unto 32 output levels
so low level values are quantised at the equivalent
of 12 bits linear quantisation.

Nearly Instantaneous Companded Audio
Multiplex (NICAM)

Companding compression reduces the resolution
(and thus increases the absolute quantisation noise)
for the higher signal levels. An alternative form of
compression can be based on range coding in which

Bits
Range 0

MSB LSB

Range 1
Range 2
Range 3
Range 4

1 2 3 4 5 6 7 8 91011121314

Transmitted bits

Figure 64: NICAM Encoding

the input waveform is divided into a fixed number
of ranges with different groups of bits transmitted
for the different ranges. This is the technique used
in the NICAM Nearly Instantaneous Companded
Audio Multiplex compression commonly used for
high quality television stereo sound signals. It has
a superior noise performance compared to A-law for
higher signal amplitudes. For low input amplitudes
only the least significant bits are transmitted while
for high input amplitudes only the most significant
bits are transmitted.

In the case of NICAM 14 bit resolution is used
which is compressed to 10 bits with for transmis-
sion using 5 ranges as shown in the table left. In
addition to the data bits a 3 bit range code must
also be transmitted. Bit reduction is achieved be-
cause the range code is transmitted for a block of
amplitude samples adding only a fraction of a bit
per sample. NICAM has a sampling frequency of
32HKz and transmits a range code every 32 sam-
ples representing a time interval of 1ms which is
nearly instantaneous as far as the audio signal is
concerned. To avoid clipping the range code corre-
sponds to the largest bit in the block. A schematic
of a NICAM coder is illustrated in figure 65).

Since 3 bits can define 8 ranges this represents
an inefficiency. This is reduced in NICAM by tak-
ing 3x32 bit blocks which would have 53 = 125
range combinations and transmitting these as a 7
bit code producing an overall delay of 3ms in the
audio signal. Errors in the range code would cause
substantial distortion of the signal so 4 parity bits
are added to the 7 bit range code to give it a Ham-
ming distance of 4.

NICAM effectively transmits the signal with 10
bits and a constant signal to noise ratio as signal
amplitude varies. It has an SNRQ improvement of
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Figure 65: Nicam Encoder
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approximately 12dB over simple A-law compression
but requires a more complex encoder and decoder.
A 10 bit linear quantiser would have an SNRQ of
60 dB but with range coding this is increased to a
subjective equivalent of 80dB.

Differential Pulse Code Modulation
(DPCM)

In PCM each sample of the waveform is encoded in-
dependently of all the others. However most source
signals sampled at the Nyquist rate or faster exhibit
significant correlation between successive samples
and so an encoding scheme exploiting the redun-
dancy in the samples will result in a lower bit rate
for the source output.

The simplest solution would be to encode the
differences between successive samples which being
smaller than the actual sampled amplitudes would
result in fewer bits being required. This is illus-
trated in figure 66) where we can see clearly that
the range of the differential signal is less than the
input signal range.

In differential pulse code modulation this tech-
nique is refined to predict the current sample based
upon p previous samples and the difference or er-
ror between the actual sample and the prediction
is encoded as illustrated here.

The process is reversed at the decoder

Let xn be the current sample and x̂n the pre-

+

Predictor

ẽn

ˆ̃xn

x̃n

{ai}

Figure 68: DPCM Decoding

dicted value can be given as a weighed linear com-
bination of p previous samples using the {ai} pre-
dictor coefficients

x̂n =

p
∑

i=1

aixn−i

The transmitted difference signal is then

en = xn −
p
∑

i=1

aixn−i

The predictor coefficients {ai} are chosen to min-
imise some function of error between xn and x̂n i.e.
minimise the output quantisation noise SNRO =
σ2

x/σ2
Q where σ2

x is the variance of the original in-

put and σ2
Q the variance of the quantisation error.

We may rewrite this as

SNRO =
σ2

x

σ2
E

σ2
E

σ2
Q

= GP SNRQ

where σ2
E is the variance of the prediction error.

The quantity Gp, called the processing gain then
represents the gain in signal to noise ratio due to
the differential quantisation scheme. For a given
baseband signal σ2

x is fixed so Gp is maximised by
minimising the variance σ2

E of the predictor. It can
be shown that minimising σ2

E with respect to the
predictor coefficients {ai} results in a set of linear
equations called the normal or Yule-Walker equa-
tions (see Proakis p.128)

p
∑

i=1

aiφ(i − j) = φ(j), j = 1, 2, . . . , p

where φ(n) is the autocorrelation function of the
sampled signal sequence xn. It may be estimated
from the finite set of samples {xn} using the rela-
tion
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Figure 69: A Practical DPCM Encoder

φ̂(n) =
1

N

N−n∑

i=1

xixi + n, n = 0, 1, . . . , p

In the DPCM encoder as demonstrated the differ-
ence between the transmitted sample and the re-
ceived sample is given by

x̃n − xn =

(

ẽn +

p
∑

i=1

aix̃n−i

)

−
(

en +

p
∑

i=1

aixn−i

)

= qn +

p
∑

i=1

ai(x̃n−i − xn−i)

where qn = ẽn − en is the quantisation error i.e.
there is an accumulation of quantisation errors at
the receiver.

Practical DPCM Shown below are block dia-
grams for the encoder and decoder of a practical
DPCM system which overcomes the problem of ac-
cumulating quantisation error associated with the
simplistic DPCM discussed previously.

In this implementation (see figure 69)) the pre-
dictor is implemented with the feedback loop

+

Predictor

ẽn

ˆ̃xn

x̃n = ˆ̃xn + en

{ai}

To lowpass
Filter

Figure 70: A Practical DPCM Decoder

around the quantiser. The input to the predictor
x̃n is the sample signal xn modified by the quan-
tisation process and the output of the predictor is
given by

ˆ̃xn =

p
∑

i=1

aix̃n−i

The difference

en = xn − ˆ̃xn

is the input to the quantiser and ẽn the output
which is encoded to binary digits and transmitted
to the destination. The quantised error ẽn is also
added to the predicted value ˆ̃xn to yield x̃n.

At the destination the same predictor is used and
its output ˆ̃xn added to the incoming error ẽn to
yield the output quantised signal x̃n which is used
by the predictor and which after filtering provides
the output signal x(t).

Using feedback around the quantiser ensures that
the error in x̃n is simply the quantisation error qn =
xn − ˆ̃xn and there is no accumulation of previous
quantisation errors in the implementation of the
decoder.

The difference between received sample and
transmitted sample is given by
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Figure 72: DPCM Decoder Using a linearly filtered
error sequence

x̃n − xn =

(

ẽn +

p
∑

i=1

aix̃n−i

)

−
(

en +

p
∑

i=1

aix̃n−i

)

= qn

i.e. it is just the quantisation error and there is no
accumulation of errors at the receiver.

An improvement in the quality of the estimate
used in DPCM can be obtained by including lin-
early filtered past values of the quantised error.
The ˆ̃xn estimate may be expressed as

ˆ̃xn =

p
∑

i=1

aix̃n−i +
m∑

i=1

biẽn−i

where {bi} are the coefficients of the filter for the
quantised error sequence. Both sets of coefficients
{ai} and {bi} are chosen to minimise some function
of the error en = xn − ˆ̃xn such as the mean square
error.

This may be thought of in two ways. Firstly
since the DPCM processing gain is proportional to
$1/\sigma Eˆ2$ it is improved by minimising the
variance in the transmitted errors and one way of

Ts
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Figure 73: Delta Modulation
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Figure 74: Delta Modulation Encoder

doing that is to filter these signals. Alternatively
and equivalently we could consider this as using
a second predictor on the error signals to further
improve our estimates of the signal.

Delta Modulation Delta modulation may be
viewed as a simplified form of DPCM in which a
1-bit quantiser is used with a first order predictor.
This is illustrated in figure 73) where a positive
pulse (1) is transmitted if the signal is increasing
and a 0 level is transmitted if the signal is decreas-
ing.

Block diagrams of an encode and decoder are in
figures 74) and 75). We note that

ˆ̃xn = ˜xn−1 = ˆ̃xn−1 + ˜en−1

and since

qn = ẽn − en = ẽn −
(

xn − ˆ̃xn

)

it follows that
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ˆ̃xn = xn−1 + qn−1

Thus the estimated (predicted) value of xn is
really the previous sample xn−1 modified by the
quantisation noise qn−1. In general the quantised
error signal is scaled by some value by a step size
∆1. In effect the encoder approximates a waveform
x(t) by a linear staircase function. For the approx-
imation to be relatively good the waveform must
change slowly relative to the sampling rate i.e. the
sampling rate must be several times (e.g. 5) the
Nyquist rate.

The quantiser input in delta modulation is an ap-
proximation to the derivative of the incoming mes-
sage signal. Therefore disturbances such as noise
result in an accumulative error in the demodulated
signal. This drawback is overcome by integrating
prior to delta modulation. This pre-emphasises the
low frequency content of the input signal, increases
the correlation between adjacent samples (thus re-
ducing the value of the variance signal) and simpli-
fies the design of the receiver which need only by
an integrator. This is called delta-sigma modula-
tion . A simple practical circuit implementing this
is shown in figure 76). The circuit is based on a
simple RC integrator. It will function if the output
of the flip-flop is V volts (e.g. a CMOS device).
The voltage across the capacitor will be a series of
positive and negative exponential decays. The er-
ror voltage is the difference between the input volt-
age and the output voltage which is approximately
zero when the input signal is zero. The receiver
can simply be a simple RC integrator as shown in
figure 76).

At any given sampling rate the performance of
the DM encoder is limited by two types of distortion
as shown in the figures 77) and 78).

Slope-overload Distortion occurs when the
step size ∆1 is too small to follow portions of

+
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f t( )
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Figure 76: A Simple Delta Modulation Encoder
and Decoder
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Figure 78: Delta Modulation Distortion: Variable
Step Size
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the waveform that have a steep slope and the
encoder output falls behind the input signal.

Granular noise results from using a step size that
is too large in parts of the waveform having a
small slope.

These two distortions place contradictory require-
ments on the step size of the encoder and a solution
is to use a variable step size that adapts itself to the
short term characteristic of the signal source i.e. it
the step size is increased where the waveform has
a steep slope and is reduced where it has a small
slope.

A number of methods may be used to adaptively
set the step size. The quantised error ẽn provides
a good indication of the waveform slope character-
istics. When successive values of ẽn are changing
signs then the slope is small, when they have the
same sign then the slope is large. A relatively sim-
ple rule to adaptively vary the step size according
to the relation

∆n = ∆n−1K
ẽn. ˜en−1

where K ≥ 1 is a constant selected to minimise
the total distortion.

A particularly popular technique is called contin-
uously variable slope modulation (CVSD) in which
the adaptive step size parameter is expressed as

∆n = α∆n−1 + k1

if ẽn, ˜en−1 and ˜en−2 have the same sign; other-
wise

∆n = α∆n−1 + k2

Accumulator
Output

Lowpass
Filter

~en

~en−1z-1
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∆ n−1

Figure 80: CSVD Decoder
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Figure 81: Adaptive Quantisation

where the parameters are chosen such that 0 <
α < 1 and k1 ≫ k2 > 0. Block diagrams rep-
resenting the decoder and encoder for performing
this type of modulation are illustrated in figures 79)
and 80)

Adaptive Quantisation

Most real sources are quasi-stationary in nature
i.e. their variance and autocorrelation function’s
vary slowly with time. PCM and DPCM encoders
are designed on the basis that the output is sta-
tionary. Their efficiency and performance can be
improved by having them adapt to the slow time-
variant statistics of the source.

With both PCM and DPCM the quantisation er-
ror qn operating on a quasi-stationary input sig-
nal will have a time-variant variance (quantisation
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noise power). An improvement that reduces the dy-
namic range of the quantisation noise is the use of
an adaptive quantiser. A relatively simple method
is to use a uniform quantiser that varies its step
size according with the variance of the past sig-
nal samples. Is its simplest form only one previous
signal sample may be used for the step size adjust-
ment. Shown in figure 81) is an example of a 3-bit
quantiser whose step size varies recursively with the
relation ∆n+1 = ∆nM(n) where M(n) is a factor
whose value depends on the quantiser level for the
sample xn and ∆n is the step size of the quantiser
for sample xn. The values of M(n) optimised for
speech are given in the table 1).

More generally we have a step size proportional
to an estimate of the variance of the signal

∆n = kσ̂(x)

The problem is one of computing the estimated
variance ˆsigma(x) continuously. This we may do
in two ways

AQF Adaptive quantisation with forward estima-
tion in which unquantised samples of the input
signal are used to derive forward estimates of
σ̂(x)

AQB Adaptive quantisation with backward esti-
mation in which samples of the quantised out-
put are used to derive backward estimates of

ˆsigma(x)

AQF requires the use of a buffer to store unquan-
tised samples and requires explicit transmission of
level information to a remote decoder. It also in-
troduces a delay (about 16ms for speech) in the en-
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Prediction

QuantiserSampler
x t( ) xn en

~en

~xn

~$xn

+

-

Figure 83: Adaptive Prediction with backward es-
timation (APB)

coding process which may not be acceptable. These
problems are all avoided by AQB which is therefore
usually preferred. It represents a non-linear feed-
back system which can be shown to be stable if the
input is bounded.

Adaptive Prediction

In DPCM the predictor can also be made adaptive
when the source output is quasi-stationary i.e. the
predictor coefficients can be changed periodically
with time. They are calculated from the short term
estimate of the autocorrelation function of xn and
transmitted along with the quantised error ẽn to
the receiver which implements the same predictor.

Analogous to adaptive quantisation we may use
forward or backward estimations of the autocorre-
lation functions of xn

APF Adaptive prediction with forward estimation
in which unquantised samples of the input sig-
nal are used to derive forward estimates of φ(n)

AQB Adaptive prediction with backward estima-
tion in which samples of the quantised output
are used to derive backward estimates of φ(n)

Transmission of the predictor offsets in part the
lower data rate achieved by the reduction in the
number of bits needed to transmit the lower dy-
namic range in the error en resulting from adap-
tive predication so as for adaptive quantisation the
backward estimation AQB is preferred

In this case the receiver predictor may compute
its own predictor coefficients from ẽn and x̃n where
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Table 1: Values of M(n) for an adaptive quantiser optimised for speech
PCM DPCM
2 3 4 2 3 4

M(1) 0.60 0.85 0.80 0.80 0.90 0.90
M(2) 2.20 1.00 0.80 1.60 0.90 0.90
M(3) 1.00 0.80 1.25 0.90
M(4) 1.5 0.80 1.70 0.90
M(5) 1.20 1.20
M(6) 1.60 1.60
M(7) 2.00 2.00
M(8) 2.40 2.40

x̃n = ẽn +

p
∑

i=1

ai ˜xn−i

If we neglect quantisation noise x̃n is equivalent
to xn and may be used to estimate the autocorre-
lation function φ(n) at the receiver. If the quan-
tisation error is sufficiently small this is adequate
for determining the predictor coefficients and the
adaptive predictor results in a reduced source data
rate.

Instead of using the block processing approach
for determining the predictor coefficients we can
do it on a sample by sample basis. Similar schemes
may also be used for adapting the filter coefficients
{ai} and {bi} for the second DPCM algorithm men-
tioned previously.

Adaptive Differential Pulse-Code modulation
(ADPCM) using both adaptive quantisation and
adaptive prediction is now internationally accepted
for speech encoded transmissions at 32 kb/s along
with standard PCM at 64 kb/s.

Assessment
Deadline: 2009-10-31 23:59:00
No Questions: 1
Time Allowed: 2 min

Adaptive Subband Coding

The coding techniques discussed so far digitally rep-
resent the temporal characteristics of the source
waveform. The are however two other basic classes
of source coding. In spectral waveform encoding the

signal waveform is usually subdivided into differ-
ent frequency bands and either the time waveform
in each band or its spectral characteristics are en-
coded for transmission. In Model-based encoding
the source is modelled as a filter that when excited
by an appropriate input signal results in the ob-
served source output. The parameters of the filter
together with an appropriate excitation signal are
transmitted and provided the number of parame-
ters are sufficiently small a large reduction in data
is achieved.

One form of spectral waveform encoding is adap-
tive subband coding (ASBC) in which the signal is
divided into a number of frequency subbands each
of which is coded separately. This technique can
digitise speech at 16 kb/s with a quality compa-
rable to 64 kb/s PCM. To achieve this it exploits
the quasi-periodic nature of voiced speech which
manifests itself in the fact that people speak with a
characteristic pitch frequency. This permits pitch
prediction reducing the level of prediction error re-
quiring quantisation and thus greatly reducing the
number of bits per sample. Further reductions are
achieved by exploiting the fact that the human ear
cannot hear noise below about 15dB below the sig-
nal level in that particular band

In ASBC noise shaping is accomplished bit adap-
tive bit assignment. The number of bits used to
encode each subband is varied dynamically and
shared with other subbands. Subbands with little
or no energy may not be encoded at all. A block
diagram of this is shown in figure 84).

The signal is split into a number (4 or 8) of con-
tiguous bands by a bank of bandpass filters (typ-
ically each covering an octave) and these are fre-
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quency shifted using single sideband modulation to
a low-pass form before sampling, band specific AD-
PCM encoding and multiplexing. into a bit stream.
The bit assignment information is transmitted to
the receiver allowing it to decode the subbands in-
dividually and modulate them back into their ap-
propriate frequencies which are summed to create
the output signal. The complexity of the adaptive
subband encoder means that there is a processing
delay of about 25ms but this is no concern in voice
storage e.g. voice mail.

Digital Baseband Transmission

Shown in figure 85) are the principle components
of a digital baseband transmission system. We take
an input binary data sequence bk which is applied
to a pulse amplitude modulator to produce a se-
quence of pulses ak. These pulses are shaped prior
to transmission using a transmit filter g(t) and the
resultant signal s(t) transmitted over the transmis-
sion channel. The transmission channel has a char-
acteristic impulse response h(t) which will modify
the shape of the pulses as they are transmitted and
an additive source of noise n(t). The received sig-

nal, modified by the channel, x(t) is filtered us-
ing the receive filter with an impulse response c(t)
and the resulting signal y(t) is sampled at integer
multiples of the pulse duration. The samples are
compared with a decision threshold and a decision
made to determine if a 1 or 0 was transmitted.

In this tutorial we will be examining two channel
effects, its response and additive noise separately.
We will see that the channel bandwidth broadens
pulses so they may overlap introducing intersym-
bol interference and limiting the maximum trans-
mission rate and noise introduces errors into the re-
ceived signal. In baseband systems, it is generally
the case that the channel bandwidth is the domi-
nant limitation.

Noise in Baseband Systems

The Matched Filter

Our problem is to design a receiver response to
minimise the effects of noise. We model the re-
ceiver as a linear time-invariant filter of impulse
response h(t) followed by a sampler taking sam-
ples at intervals Tb as shown in figure 86). The
known original pulse signal is s(t) and the output
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of the channel is x(t) = s(t) + n(t) where n(t) is
the additive noise of zero mean and power spectral
density N0/2. We wish to determine the optimum
filter response. Since the filter is linear its output
may be represented as y(t) = so(t) + n(t) where
so(t) and n(t) are the signal and noise components
respectively. We wish to maximise the instanta-
neous output signal component measured at time
t = T compared with the average power of the out-
put noise n(t). Assuming we can synchronise the
receiver with the incoming data and take the sam-
ples at the optimum moment we chose the filter
response to maximise the peak pulse signal-to-noise
ratio defined as

η =
|so(T )|2
E[n2(t)]

Signal Component We denote the Fourier
transforms of the known signal and filter as S(f)
and H(f) respectively. The Fourier Transform
of the output signal from the filter so(t) will be
S(f)H(f) so we have

so(t) =

∫ ∞

−∞
H(f)S(f)ei2πftdf

Hence when the output is sampled at t = T we
have for the signal component

|so(t)|2 =

∣
∣
∣
∣

∫ ∞

−∞
H(f)S(f)ei2πfT df

∣
∣
∣
∣

2

Noise Component The power spectral density
of the output noise from the filter is the power
spectral density of the input noise N0/2 times the
squared magnitude of the filter transfer function
H(f)

SN (f) =
N0

2
|H(f)|2

The average power is therefore

E
[
n2(t)

]
=

N0

2

∫ ∞

−∞
|H(f)|2df

We thus have for the peak pulse signal-to-noise

η =

∣
∣
∣

∫∞
−∞ H(f)S(f)ei2πfT df

∣
∣
∣

2

N0

2

∫∞
−∞ |H(f)|2df

To find the particular form of H(f) which max-
imises this expression we apply Schwarz’s Inequal-
ity (Section ) to the numerator of this which may
then be rewritten as

∣
∣
∣
∣

∫ ∞

−∞
H(f)S(f)ei2πfT df

∣
∣
∣
∣

2

≤
∫ ∞

−∞
|H(f)|2df

∫ ∞

−∞
|S(f)|2df

We may thus redefine the peak pulse signal to noise
as

η ≤ 2

N0

∫ ∞

−∞
|S(f)|2df

This depends only on the signal energy and noise
power and not on the filter transfer function. Thus
η will be a maximum when the filter transfer func-
tion is chosen so that the equality holds and we
have

Hopt(f) = kS∗(f)e−i2πfT

Taking Fourier transforms of this equation gives
the time domain relation

hopt(t) = ks(T − t)

Important

The impulse of the optimum matched filter

is a time reversed and delayed version of the

input signal except for an arbitrary scaling

factor.

We have for the optimum impulse response of a
matched filter the expression hopt(t) = ks(T − t)
i.e. it is uniquely defined except for an arbitrary de-
lay and scaling factor by the waveform of the pulse
signal s(t). The most important result we wish to
know is what the peak pulse signal-to-noise ratio is
in this case. To calculate this we consider a filter
matched to a known signal s(t). The Fourier trans-
form of the matched filter signal output is given
by

So(f) = Hopt(f)S(f)

= kS∗(f)S(f)e−i2πfT

= k|S(f)|2e−i2πfT

Taking the Fourier transform of this we get
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so(T ) = k

∫ ∞

−∞
So(f)ei2πfT df

= k

∫ ∞

−∞
|S(f)|2df

= kE

where E is the energy of the pulse signal. Similarly
we may substitute out matched filter result into the
expression for the noise power to get

E
[
n2[t]

]
=

N0

2

∫ ∞

−∞
|H(f)|2df

=
k2N0

2

∫ ∞

−∞
|S(f)|2df

=
k2N0E

2

and hence the peak pulse signal-to-noise ratio be-
comes

ηmax =
(kE)2

(k2N0E/2)
=

2E

N0

The peak pulse signal-to-noise ratio of a matched
filter depends only on the ratio of the signal energy
to the power spectral density of the white noise at
the filter input i.e.

Important

All signals with equal energy are equally ef-

fective to combat additive white Gaussian

noise with a matched filter.

As an example we show (figure 88)) the matched
filter response for a rectangular pulse of amplitude
A and duration T . In this case the impulse response

s
t

0 (
)kA T2

Matched
Filter

s
t(
)

A
Signal

t0 T

ATIntegrate
and

Dump

Figure 88: Matched Filter for a Rectangular Pulse

of the filter is exactly that of the waveform itself
and the output is a triangle wave of amplitude kAT .
With a maximum at t = T . This special case can be
implemented using the integrate-and-dump circuit
(figure 87)) which for 0 ≤ t ≤ T has the same
waveform at the output as the ideal matched filter.

Schwarz’s Inequality Given two complex func-
tions φ1(x), φ2(x) of a real variable x which have
finite energy i.e.

∫ ∞

−∞
|φi(x)|2dx < ∞

then we may write

∣
∣
∣
∣

∫ ∞

−∞
φ1(x)φ2(x)dx

∣
∣
∣
∣

2

≤
∫ ∞

−∞
|φ1(x)|2dx

∫ ∞

−∞
|φ2(x)|2dx

The equality in this expression only holds if we
have

φ1(x) = kφ∗
2(x)

where k is an arbitrary constant.

Gaussian Noise Processes

The simplest mathematical model for a communi-
cation system is the additive noise channel where
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Figure 89: Additive Noise Channel

the transmitted signal s(t) is corrupted by an ad-
ditive white noise process n(t). This is the most
random noise process in that there is no correla-
tion between samples. Physically the noise may
arise from electronic components and amplifiers at
the receiver of the communication system or from
interference encountered in transmission (e.g. radio
interference). If the noise primarily arises from elec-
tronic components it may be characterised as ther-
mal noise which statistically is characterised as a
Gaussian noise process . Hence the resulting model
is called the Additive Gaussian noise channel .

This may be viewed as the result of the statistical
central limit theorem which states that the distri-
bution of a large number of identical random vari-
ables (i.e. electrons under the influence of thermal
vibrations) will tend to Gaussian as the number of
variables tends to infinity.

The probability distribution function of a Gaus-
sian or normally distributed random variable is

p(x) =
1√

2πσX

exp

(

− (z − µX)2

2σ2
X

)

where µX is the mean and σ2
X the variance of the

random variable X.
The cumulative distribution function is therefore

given by

F (x) =

∫ x

−∞
p(u)du

=
1

2

(

1 + erf

(
x − µX√

2σX

))

= 1 − Q

(
x − µX

σX

)

It is common to use the Q function, as defined
above, when dealing with communications systems,
and this is plotted below.

µx−2σx µx−σx µx µx+σx µx+2σx

0

1

F x
x X

X

( ) erfc= −
−
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Figure 91: Cumulative Gaussian Probability Dis-
tribution
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Figure 92: Plot of Q(x) versus SNR
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p(x) = 1√
2πσx
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(
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2σ2
x
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z

1
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(
z−µx√
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Figure 90: The Gaussian Probability Distribution Function

Other random distributions may be used to
model other processes for example the Rayleigh and
Rice distributions are used to model the fluctua-
tions of signals received from a multiple path fading
channel.

White Noise White noise is noise in which the
power spectral density is independent of the oper-
ating frequency This is commonly used in the noise
analysis of communication systems. The power
spectral density of white noise is expressed as

SW (f) =
N0

2

The parameter N0 (W/Hz) is usually referenced
to the input stage of a receiver and may be ex-
pressed as

N0 = kTe

where k is Boltzmann’s constant and Te is the
equivalent noise temperature of the receiver. The
equivalent noise temperature of a system is defined
as the temperature at which a noisy resistor has to
be maintained such that, by connecting the resistor
to the input of a noiseless version of the system,
it produces the same available noise power at the
output of the system as that produced by all the
sources of noise in the actual system. It depends
only on the parameters of the system.

Since the autocorrelation function is the inverse
Fourier transform of the power spectral density
then for white noise

RW (τ) =
N0

2
δ(τ)

Note that since this is zero for τ 6= 0 any two
samples of white noise no matter how closely to-
gether in time they are taken are uncorrelated. If
the white noise is also Gaussian then the two sam-
ples are also statistically independent. Gaussian
white noise may therefore considered to be the most
random distribution.

Since white noise has infinite bandwidth it also
has infinite average power and is therefore not phys-
ically realisable. However provided the bandwidth
of the noise at the input of a system is significantly
larger than that of the system itself we may model
the noise process as white noise. Calibrated white
noise may be used to characterise the spectral re-
sponse of a system.

The Error Rate Due To Noise

We seek to determine the probability of error in
a binary PCM system based on non-return-to-zero
(NRZ) signalling due to additive white Gaussian
noise of zero mean and power spectral density
N0/2. For this analysis the transmitted signal con-
sists of pulses of constant A or −A amplitude units
and Tb seconds in duration.
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Figure 93: Baseband receiver using an integrate and dump filter
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Figure 94: The effect of the integrate and dump
filter on signal and noise.

The receiver used consists of a matched (in-
tegrate and dump) filter (see The Matched Fil-
ter (Section )) and a threshold decision device as
shown in figure 93). The matched filter output is
sampled at the end of each signalling interval. Over
the sampling interval Tb the signal is integrated so
that the signal accumulates while the variance of
the random noise σ2

Y will decrease. This effect is
illustrated in figure 94).

The variance is then given by

σ2
T =

N0

2Tb
(7)

See Haykin p. 420 for the proof of this.
In figure 95) we can plot a graph showing the

probability distribution function versus amplitude
for the two signals. We can see that it consists
of two Gaussian distributions separated by 2A and
with variances as given in equation 7).

We denote the conditional probability of error

given that symbol 0 was sent as Pe0 and given
that we set the decision threshold midway between
the two levels at zero this is given by the labelled
shaded area under that tail of the Gaussian distri-
bution as shown in figure 95).

Pe0 =
1

√

πN0/Tb

∫ ∞

0

exp

(

− (y + A)2

N0/Tb

)

dy

By defining a new variable

z =
y + A
√

N0/Tb

this may be rewritten as

Pe0 =
1√
π

∫ ∞

√
Eb/N0

e−z2

dz

where Eb is the transmitted energy per bit given
by

Eb = A2Tb

Thus Pe0 may be given in terms of the comple-
mentary error function as

Pe0 =
1

2
erfc

(√

Eb

N0

)

We may perform exactly the same calculation for
the conditional probability of error provided a 1 is
sent Pe1. In this case of a binary symmetric chan-
nel with the threshold exactly half way between the
two signal levels it will be identical to Pe0. The av-
erage probabilityof symbol error P (e for the channel
will depend on the a priori probabilities of binary
symbols 0 and 1, p0 and p1 which if we assume are
equiprobable p0 = p1 = 1/2 we get

Pe = p0Pe0 + p1Pe1

=
1

2
erfc

(√

Eb

N0

)
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Figure 95: Signal space diagram for the bipolar NRZ system
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NRZ

or in terms of the more usually used Q function

Pe = Q

(√

2Eb

N0

)

which is plotted in figure 96)

Assessment
Deadline: 2009-11-14 23:59:00
No Questions: 3
Time Allowed: 10 min

Complementary Error Function Tables

Intersymbol Interference

The main source of errors in most baseband com-
munication systems is intersymbol interference aris-
ing from the dispersive nature of the communi-
cations channel i.e. pulse distortion arising from
the non-ideal filtering characteristics of the trans-
mission channel leading to interference between
symbols. In baseband transmission discrete pulse-
amplitude modulation (PAM) is the most efficient
modulation scheme and for the analysis carried out
here we will be looking at binary systems. The
analysis can easily be generalised for M-ary data
transmission.

Shown in figure 98) is the generic model of the
system which we will be considering. An incoming
binary sequence {bk} of symbols 0 and 1 each of
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Figure 98: Generic model of a baseband transmission system

duration Tb is transformed by the pulse amplitude
modulator into a sequence of short pulses {ak} of
amplitudes +1 and -1. These short pulses are ap-
plied to a transmit filter of impulse response g(t)
producing the transmitted signal

s(t) =
∑

k

akg(t − kTb)

The signal s(t) is modified by transmission
through a channel of impulse response h(t) and also
has some noise n(t) added to it. At the receiver the
noisy signal x(t) is passed through a receiver filter
c(t) and the resulting filtered output y(t) is syn-
chronously sampled at intervals of Tb and the sam-
ples are passed to a threshold device which outputs
a 1 if the sample is greater than the threshold λ
and 0 if less.

The receive filter output can be written in the
form

y(t) = µ
∑

k

akp(t − kTb) + n(t)

where µ is an arbitrary scaling factor taking ac-
count of amplitude changes through the transmis-
sion process and p(t) the received pulse will given

by the convolution of the pulse shape, the channel
response and the receive filter:

µp(t) = g(t) ∗ h(t) ∗ c(t)

where we can normalise p(t) such that p(0) = 1

The receive filter output is sampled at time in-
tervals ti = iTb giving

y(ti) =
∞∑

k=−∞
akp((i − k)Tb) + n(ti)

= µai + µ
∞∑

k=−∞,k 6=i

akp((i − k)Tb) + n(ti)

(8)
where µai represents the contribution of the ith

transmitted bit. The second term represents the
residual effect of all the r transmitted bits on de-
coding the ith bit - the intersymbol interference .
The last term represents the noise signal at time ti
.
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x
erfc(x)

x
erfc(x)

x
erfc(x)

x
erfc(x)

0 1 1.25 0.0771 2.5 0.000406953.75 1.1373e-
07

0.05 0.94363 1.3 0.065992 2.55 0.000310663.8 7.7004e-
08

0.1 0.88754 1.35 0.056238 2.6 0.000236033.85 5.1886e-
08

0.15 0.832 1.4 0.047715 2.65 0.000178493.9 3.4792e-
08

0.2 0.7773 1.45 0.040305 2.7 0.000134333.95 2.3217e-
08

0.25 0.72367 1.5 0.033895 2.75 0.000100624 1.5417e-
08

0.3 0.67137 1.55 0.028377 2.8 7.5013e-
05

4.05 1.0188e-
08

0.35 0.62062 1.6 0.023652 2.85 5.5656e-
05

4.1 6.7e-09

0.4 0.57161 1.65 0.019624 2.9 4.1098e-
05

4.15 4.3847e-
09

0.45 0.52452 1.7 0.01621 2.95 3.0203e-
05

4.2 2.8555e-
09

0.5 0.4795 1.75 0.013328 3 2.209e-
05

4.25 1.8506e-
09

0.55 0.43668 1.8 0.010909 3.05 1.608e-
05

4.3 1.1935e-
09

0.6 0.39614 1.85 0.008889 3.1 1.1649e-
05

4.35 7.6594e-
10

0.65 0.35797 1.9 0.0072096 3.15 8.3982e-
06

4.4 4.8917e-
10

0.7 0.3222 1.95 0.0058207 3.2 6.0258e-
06

4.45 3.1089e-
10

0.75 0.28884 2 0.0046777 3.25 4.3028e-
06

4.5 1.9662e-
10

0.8 0.2579 2.05 0.0037419 3.3 3.0577e-
06

4.55 1.2374e-
10

0.85 0.22933 2.1 0.0029795 3.35 2.1625e-
06

4.6 7.7496e-
11

0.9 0.20309 2.15 0.0023614 3.4 1.522e-
06

4.65 4.8297e-
11

0.95 0.17911 2.2 0.0018628 3.45 1.0661e-
06

4.7 2.9953e-
11

1 0.1573 2.25 0.0014627 3.5 7.431e-
07

4.75 1.8485e-
11

1.05 0.13756 2.3 0.0011432 3.55 5.1548e-
07

4.8 1.1352e-
11

1.1 0.11979 2.35 0.000889273.6 3.5586e-
07

4.85 6.9375e-
12

1.15 0.10388 2.4 0.000688513.65 2.4448e-
07

4.9 4.2189e-
12

1.2 0.089686 2.45 0.000530583.7 1.6715e-
07

4.95 2.5531e-
12

The Ideal Nyquist Channel

Recalling our equation for the output of the trans-
mission system (eqn 8)) we see that to eliminate the
effects of Intersymbol Interference (Section ) and
ensure perfect reception in the absence of noise we
must control the received pulse shape such that

p(iTb − kTb) =

{
1, i = k
0, i 6= k

in which case y(ti) = µai for all i. For analysis
we wish to transform this into the frequency do-
main. Since this is periodically sampled at time
intervals Tb the Fourier transform will be periodic
in frequency intervals Rb = 1/Tb and may be writ-
ten in the form

Pδ(f) = Rb

∞∑

n=−∞
P (f − nRb)

=

∫ ∞

−∞

∞∑

m=−∞
[p(mTb)δ(t − mTb)] e

−j2πftdt

Where m = i − k. Imposing our condition for zero
intersymbol interference gives

Pδ(f) =

∫ ∞

−∞
p(0)δ(t)e−j2bπftdt

= p(0)

and we get

∞∑

n=−∞
P (f − nRb) = Tb (9)

This is the Nyquist criterion for distortionless base-
band transmission in the absence of noise .

Note P (f) is the filter characteristic of the whole
system including transmit, channel and receive fil-
ters.

As an illustration of the Nyquist criterion we
plot in figure 99) the filter response for the three
cases of increasing sample period T < 1/(2W ),
T = 1/(2W ) and T > 1/(2W ). We see that for
T < 1/(2W ) we cannot achieve the Nyquist cri-
terion as specified in equation 9) in that the fil-
ter response falls to zero for some frequencies. For
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Figure 99: Illustration of the Nyquist criterion showing how the spectra vary with sample rate
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Figure 100: Ideal Nyquist Filter Response

T = 1/(2W ) we can only achieve the Nyquist con-
dition for a rectangular filter which gives a constant
response across all frequencies.

The simplest solution to the Nyquist condition
is therefore a rectangular filter function having a
constant value between −W and W .

P (f) =

{
1

2W −W < f < W
0 |f | > W

=
1

2W
rect

(
f

2W

)

where the over-all system bandwidth W is de-

1.0

t

Tb-3 -2 -1 0

0.5

1 2 3

p t( )

Sampling Instants

p t Wt( ) sinc( )= 2

Figure 101: Ideal Nyquist Pulse

fined by

W =
Rb

2
=

1

2Tb
(10)

i.e. no frequencies exceeding half the bit-rate are
needed. This is shown in figure 100).

Taking the Fourier transform of this thus gives
one signal waveform which produces zero intersym-
bol interference. This is shown in figure 101).

p(t) = sinc(2Wt) (11)

The bit rate Rb = 2W is called the Nyquist rate
and W is the Nyquist bandwidth corresponding to
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Figure 102: Zero interchannel interference for the
ideal Nyquist Channel with the sequence 1011010

the ideal Nyquist channel given by equations 10)
and 11).

Examining the function p(t) we see that it has a
maximum at t = 0 and goes through zero at integer
multiples of Tb so that when the received waveform
is sampled at intervals of Tb there is zero interfer-
ence between symbols. This effect is shown for the
sequence 1011010.

The ideal Nyquist channel solves the problem
of zero intersymbol interference with the minimum
bandwidth possible but has serious practical diffi-
culties. First of all the filter function has abrupt
transitions at the band edges ±W which is phys-
ically unrealisable. Secondly the sidelobes in the
function p(t) decrease only as 1/|t| which for large
t means that there is little margin of error in the
sampling times at the receiver. Indeed the sum of
the contributions from successive bits where there
is timing error may diverge causing erroneous deci-
sions in the receiver.

The Raised Cosine Filter

The practical difficulties of the ideal Nyquist chan-
nel may be overcome using a filter function with
an extendible bandwidth between W and 2W and
without the sharp transitions. One such frequency
characteristic is the raised cosine spectrum given by

2WP(f)

1.0

0-1-2 21

0
0.5

1

α

f

W

Figure 103: The raised Cosine Filter Characteris-
tics
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Figure 104: The corresponding raised cosine wave-
forms

P (f) =







1

2W
, 0 ≤ |f | < f1

1

4W

(

1 − sin

(
π(|f | − W )

2W − 2f1

))

, f1 ≤ |f | < 2W − f1

0, |f | ≥ 2W − f1

or taking the inverse Fourier transform, in the
time domain

p(t) = sinc(2Wt)
cos(2παWt)

1 − 16a2W 2t2

where α = a − f1/W is called the rolloff fac-
tor and represents the excess bandwidth over the
ideal solution W . The frequency and time response
for this frequency characteristic are given in fig-
ures 103) and 104) for values of α = 0, 0.5, 1

Looking at the impulse response we see that it
has a part sinc(2Wt) which ensures that zero cross-
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Figure 105: Zero interchannel interference for the
raised cosine filter with the sequence 1011010.

ings of p(t) occur at the desired sampling intervals
t = iTb and a second factor decreasing as 1/t2 which
attenuates the tails considerably reducing the sen-
sitivity of the receiver to sampling time errors. The
full cosine-roll-off with α = 1 has the most gradual
roll-off and the smallest tails in p(t). Additionally
its pulse width at half amplitude is equal to the bit
duration Tb and their are zero crossings at half inte-
ger intervals of Tb as well as at the sampling times
which aid timing signal extraction for synchronisa-
tion purposes. However these desirable properties
are at the expense of a channel bandwidth double
that required by the ideal Nyquist channel. The
effect of the raised cosine filter on the waveform
corresponding to binary sequence is shown in fig-
ure 105). This clearly demonstrated the superior
properties of the raised cosine filter compared to
that of the ideal Nyquist channel (figure 102).

Assessment
Deadline: 2009-11-14 23:59:00
No Questions: 2
Time Allowed: 15 min

Duobinary Coding

Correlative-level coding or partial-response sig-
nalling schemes involve adding intersymbol inter-

ference to a transmitted signal in a controlled way
so as to achieve a signalling rate closer to the
Nyquist rate of 2W symbols per second in a channel
of bandwidth W using realisable filters. Since the
intersymbol interference is known its effect can be
interpreted at the receiver in a deterministic way.
The simplest such scheme is duobinary signalling
also known as class I partial response .

In duobinary signalling we apply the incoming se-
quence of uncorrelated binary symbols {bk} of du-
ration Tb to a pulse amplitude modulator to pro-
duce a two-level sequence of short pulses {ak} of
corresponding amplitudes ±1. This two-level pulse
sequence is passed to a duobinary encoder which
transforms it to a sequence of three-level correlated
pulses {ck} consisting of the sum of the present in-
put value ak and the previous value ak−1.

ck = ak + ak−1

It does this by adding a Tb delayed version of
the signal to itself. This is the introduction of in-
tersymbol interference under the designers control,
the basis of correlative level coding.

The overall transfer function of the duobinary
signalling scheme is given by the simple delay line
filter cascaded with the ideal Nyquist channel given
by

HI(f) = HNyquist(f)
[
1 + e−j2πfTb

]

= 2HNyquist(f) cos(πfTb)e
−jπfTb

=

{
2 cos(πfTb)e

−jπfTb |f | ≤ 1/(2Tb)
0 otherwise

This function can easily be approximated in prac-
tice as there is continuity at the band edges i.e. this
is a realisable filter.

In the time domain it will be two sinc pulses time
displaced by Tb seconds and given by

hI(t) =
sin(πt/Tb)

πt/Tb
+

sin(π(t − Tb)/Tb)

π(t − Tb)/Tb

=
T 2

b sin(πt/Tb)

πt(Tb − t)

We see that the impulse response has only two
distinguishable values at the sampling intervals. It
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Figure 107: Duobinary Spectral Response

Table 2: Table of signals for duobinary coding

Binary Se-
quence {bk}

0 0 1 0 1 1 0

Precoded Se-
quence {dk}

1 1 1 0 0 1 0 0

Two-Level se-
quence {ak}

+1 +1 +1 -1 -1 +1 -1 -1

Duobinary
Coder output
{ck}

+2 +2 0 -2 0 0 -2

Decoded Se-
quence

0 0 1 0 1 1 0

is called partial-response signalling because the re-
sponse in any single signalling interval is only par-
tial. Note also that the tails in the response decay
as 1/|t2|, faster than in the ideal Nyquist channel.
An estimate from the original pulse in the two level
sequence âk can be obtained from âk = ck − âk−1

so if the previous estimate was stored estimate was
correct the current estimate will be correct too.
This is called decision feedback. A drawback of this
technique is that the output estimate depends on
previous output estimates and therefore errors will
tend to propagate through the output. This may be
overcome by precoding before the duobinary coding
converting the original binary sequence {bk} into
another {dk} using

dk = bk ⊗ dk−1

which is the applied to the pulse modulator. Fig-
ure 108) shows a schematic of a duobinary encoder
with precoding.

The combined use of this non-linear operation
with the duobinary coding yields

ck =

{
0 if bk = 1
±2 if bk = 0

and so a simple threshold decision rule may be
used for detecting the original binary sequence from
the duobinary sequence and there is no propagation
of errors.

A table illustrating all the different signals for
duobinary coding with precoding is given in fig-
ure 2).
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Figure 108: Duobinary coder with precoding
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{ck} |{ck}| 1 if |{ck}| < 1
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Figure 109: Duobinary Receiver

The benefit of duobinary encoding arises because
the pulse representing 1 bit extends over two pe-
riods therefore reducing its bandwidth. However
there is an overlap, one symbol with the next, so
that the symbol rate is maintained at one bit per
interval.

General correlative-level coding

General correlative level or partial response
schemes use a tapped-delay-line filter with tap-
weights w0, w1, . . . wn−1 to use a weighted linear
combination of N ideal Nyquist pulses given by

h(t) =
N−1∑

n=0

wnsinc

(
t

Tb
− n

)

This is illustrated in figure 110). An appropriate
choice of tap-weights results in a variety of spectral
shapes. Given in figure 3) is a table of tap-weights
for different classes of partial response signalling
schemes.

The duobinary signalling scheme has a power
spectral density which is nonzero at the zero fre-
quency i.e., has a d.c. component which is un-
desirable in many applications. Another common
example is the so called modified duobinary sig-
nalling scheme which has the weighting factors
w0 = +1, w1 = 0, w2 = −1. Its transfer charac-
teristics are shown in figure 111). As can be seen it
has no d.c. component. As with duobinary coding
precoding is used to remove error propagation.

Table 3: Table of tap weights for different partial
response signalling schemes

Type
N of
class

w0 w1 w2 w3 w4 w5

I 2 1 1 Duobinary
II 3 1 2 1
III 3 2 1 -1
IV 3 1 0 -1 Modified

Duobi-
nary

V 5 -1 0 2 0 -1

−2 0 2 4
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0

0.5

1
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h
I
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Figure 111: Impulse responses of the modified
duobinary conversion filter
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Figure 112: Spectral responses of the modified
duobinary conversion filter
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Figure 113: Equalisation

Tapped-delay-line equalisation

In the characteristics of a communication channel
are known precisely it is possible to choose transmit
and receive filters to make the intersymbol inter-
ference at the sampling instants arbitrarily small.
In practice however the communicational channel
may not be known precisely and there may be lim-
itations in the precision to which the filters can be
manufactured. In this case there will be residual
distortion and this can be compensated or equalised
using an equaliser which is placed after the receive
filter as shown in figure 113).

A common of equaliser, illustrated in figure 114),
is the tapped-delay-line filter consisting of a sym-
metric arrangement of 2N + 1 taps with weights
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w−N , . . . , w−1, w0, w1, . . . , wN giving an impulse
response

h(t) =

+N∑

k=−N

wkδ(t − kT )

For a linear system of impulse c(t) followed by
the equaliser we have the total impulse function

p(t) = c(t) ∗ h(t)

= c(t) ∗
+N∑

k=−N

wkδ(t − kT )

=

+N∑

k=−N

wkc(t) ∗ δ(t − kT )

=
+N∑

k=−N

wkc(t − kT )

Evaluating at sampling times t = nT we get the
discrete convolution sum

p(nT ) =

+N∑

k=−N

wkc((n − k)T )

To eliminate intersymbol interference completely
we require that there be no contributions from the
current pulse signal at the sampling time from all
other pulse signals. We note that here we have only
2N + 1 coefficients and can only satisfy the ideal
condition for the 2N nearest neighbouring pulses.
To achieve this we have 2N +1 simultaneous equa-
tions relating the filter weighting factors to the sig-
nal contributions at discrete time intervals

+N∑

k=−N

wkc((n − k)T ) =

{
1, n = 0
0, n = ±1, ±2, . . . ,±N

or in matrix form















c0 . . . c−N+1 c−N c−N−1 . . . c−2N

...
...

...
cN−1 . . . c0 c−1 c−2 . . . c−N−1

cN . . . c1 c0 c−1 . . . c−N

cN+1 . . . c2 c1 c0 . . . c−N+1

...
...

...
c2N . . . cN+1 cN cN−1 . . . c0





























w−N

...
w−1

w0

w1

...
wN















=















(12)
A tapped delay line equaliser described by this
equation is referred to as a zero-forcing equaliser.
It is optimum in the sense that it minimises the
peak distortion and is relatively easy to implement.
The longer we make the equaliser (the larger N is)
the more closely the equalised system approaches
the ideal of the Nyquist condition for distortionless
transmission.

Adaptive Equalisation. In a telecommunica-
tions environment the channel is usually time vary-
ing. For example in a switched telephone network
there may be differences between individual trans-
mission links and in the number of transmission
links switched in a connection. A fixed equaliser
may not therefore be adequate to eliminate inter-
symbol interference and there is need for adap-
tive equalisation where the equaliser adjusts the
weighting coefficients continuously and automati-
cally. Generally the equaliser is used at the re-
ceiving end of the transmission system (postchannel
equalisation). Prior to data transmission a suitable
training sequence is transmitted through the chan-
nel allowing the filter to adjust its parameters. This
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is called precall equalisation and is usually sufficient
as the average telephone channel changes little dur-
ing a call. Generally the tapped delay line filter
is synchronous in that the tap delay spacing is the
same as the symbol duration of the transmitted sig-
nal.

The adaptation may be achieved by observing
the error between the desired pulse shape and the
actual pulse shape at the filter output measured at
the sampling instants, and using this error to esti-
mate the direction in which the tap-weights need to
be changed to approach the optimum. We may use
a peak distortion criterion minimising the worst-
case intersymbol interference at the equaliser out-
put similar to the zero-forcing concept described
previously. Such an equaliser is optimum only
when the peak distortion is not too severe and suf-
fers from sensitivity to timing perturbations. More
commonly a mean-square error criterion is used
that is for minimum mean-square error, the cross-
correlation between the output error sequence and
the input sequence must have zeros for the 2N + 1
components with integer lags corresponding to the
index values of the available tap-weights of the fil-
ter. The algorithm used to achieve this is the least-
mean-square (LMS) algorithm (see Haykin p. 455).
During the training mode a known sequence, usu-
ally a pseudo-noise sequence i.e. deterministic with
noise like characteristics, is transmitted. A syn-
chronised version of this is generated at the re-
ceiver and compared with the received data to ad-
just the equaliser according to the LMS algorithm.
The equaliser is then switched to decision directed
mode. In this mode the decisions made by the
equaliser are correct with high probability and the
equaliser can use its estimate of the symbols to de-
termine the error signal. The equaliser can there-
fore track relatively slow changes in channel char-
acteristics.

Implementations of the LMS algorithm may be
carried out using hardwired digital electronics, us-
ing programmable digital electronics or where the
symbol weight is too high for digital implementa-
tion using charge-coupled device (CCD) technology.

Baseband M-ary PAM Transmission

In a baseband M-ary PAM system the pulse am-
plitude modulator is used to produce of one of M
possible amplitude levels. Illustrated in figure 115)
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Figure 115: M-ary Baseband Transmission

Table 4: Quaternary Modulation.
Dibit Ampli-

tude

00 -1.5
01 -0.5
10 +0.5
11 +1.5

is the quaternary case with M = 4 and the binary
sequence 00 10 11 01 11. In an M -ary system the
information source emits an alphabet with M sym-
bols and each amplitude at the modulator output
corresponds to a distinct symbol so there are M
distinct amplitude levels to be transmitted. The
table 4) shows the amplitude mapping used in the
example quaternary system.

The symbol duration is denoted by T and we
refer to 1/T as the signalling rate in symbols per
second or baud . In general in an M -ary system
each baud is equal to log2 M bits per second and the
symbol duration may be related to the bit duration
Tb of an equivalent binary PAM system as

T = Tb log2 M

Therefore in a given channel bandwidth we find
that by using an M -ary PAM we are able to trans-
mit information at a rate that is log2 M times faster
than the corresponding binary system. However to
realise the same average probability of error an M -
ary PAM system requires more transmitted power.
For M ≥ 2 and the average probability of error
much less than 1 the transmitted power must be
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increased by a factor M2/ log2 M compared to a
binary PAM system.

The transmitter and receiver for an M -ary PAM
system are necessarily more complex than the
equivalent binary PAM system. In particular at the
receiver the signal must be compared to a number
of threshold or slicing levels. The procedures used
in designing the transmission and receive filters and
for calculating the error rate due to noise are sim-
ilar to those used for baseband binary PAM. Not
that such modulation schemes involve an energy
variation i.e. symbols have varying energies. They
are therefore generally not suitable for transmission
channels which contain a non-linear response.

Assessment
Deadline: 2009-11-14 23:59:00
No Questions: 3
Time Allowed: 15 min

Line code requirements

After information has been source coded to remove
redundancy and error-correct coded the signal may
require further encoding to be give good baseband
transmission characteristics. In particular the fre-
quency spectrum should ‘match’; the channel spec-
trum.

PCM signals are often carried over cables origi-
nally installed for analogue telephony. In order to
minimise distortion in such cables they are artifi-
cially loaded with inductive coils at 2km intervals
which introduces high losses at frequencies above
4kHz. The inductors must be removed to improve
the high frequency response.

0 1 0 1 1 1 1 1 1 1 1 1 0 1 0

decision 
threshold

Effect of no dc path

Figure 117: Effect of no DC path

Another serious problem for PCM is that 2km
sections of the analogue cable are coupled together
using transformers meaning that there is no dc path
through the transmission system. The effect of this
is to introduce ‘droop’ of the signal level when long
sequences of a constant amplitude occur resulting
in drop below the decision threshold and errors.
Appropriate line coding would generate a signal
with no d.c. component.

It is often also important that the spectrum of
the transmitted waveform have a component at the
bit rate frequency to enable bit-rate clock recovery
at the receiver. A summary of the requirements on
a line code are given below.

Transparency The code must be independent of
bit sequence to impose no restrictions on mes-
sage content

Efficiency Each symbol of the code should con-
tribute to information transmission

Unique Decodability Each symbol must be able
to be decoded without ambiguity to yield the
original bit sequence

Suitable Energy Spectrum Zero dc component
and small low frequency content to avoid base-
line wandering; small high frequency content
to minimise effects of inter-channel interfer-
ence

Timing Information Content For ease of clock
extraction, coded signal should have high en-
ergy content at clock frequency

In a binary code each binary symbol may be either
of two distinct values, normally denoted as 0 and 1.
In a ternary code each symbol may be one of three
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distinct values or kinds. Pseudo-ternary codes also
use three levels but carry no more information per
bit than a binary code.

Binary Signalling Formats

Shown in figure 118) are examples of the different
binary signalling formats.

Of-Off Signalling Each Symbol 1 is represented
by transmitting a pulse of constant amplitude
for the duration of the symbol and each 0 is
represented by turning off the symbol.

Nonreturn-to-zero (NRZ) Signalling
Symbols 1 and 0 are represented by pulses of
equal positive and negative amplitudes.

Return-to-zero (RZ) Signalling Each signal 1
is represented by a positive pulse of width
less than the symbol width (here a rectangular
pulse of half symbol width) and each symbol 0
is represented by transmitting no pulse.

Bipolar Return-to-zero (BRZ) signalling
It uses three levels (a pseudo-ternary code).
Positive and negative pulses of equal ampli-
tude are use alternately for symbol 1 and
no pulse is used for symbol 0. This is also
known as alternate mark inversion (AMI)
encoding. On average this coding scheme
produces a signal with no d.c. component
allowing transmission through lengths of line
that are transformer coupled and therefore
have no d.c. signal path. The symbol rate
does not increase and decoding is achieved
by rectification. In regenerators the positive
marks and the negative marks have to be
handled separately. The efficiency is rather
low, each ternary symbol being capable of
transmitting 1.6 bits, and as the code carries
1 bit per symbol the redundancy is 60%. It
has an error detecting capability since errors
can violate the simple coding rule. The pulses
may be of width less than the symbol width.
This is also called alternate mark inversion.

Split-phase (Manchester code) Each symbol 1
is represented by a positive pulse followed by a
negative pulse with both pulses being of equal

Table 5: Miller Code

Input Data Bits Output Coded Se-
quence

0 x 0
1 0 1
x = 0, if preceding input bit is 1
x = 1, if preceding input bit is 0

amplitude and half symbol width. For sym-
bol 0 the polarities of the two pulses are re-
versed. The d.c. component is suppressed and
the Manchester code has relatively insignifi-
cant low-frequency components independent of
signal statistics.

Differential Encoding The information is en-
coded in terms of signal transitions. In the ex-
ample shown a transition represents a symbol
0 and no transition represents a 1. The coded
signal may be inverted without loss of infor-
mation. Recovery is performed by comparing
the polarity of adjacent symbols to establish
whether or not a transition has occurred.

Runlength Limited Codes

Codes that have a restriction on the number of con-
secutive 1s or 0s in a sequence are generally called
runlength-limited codes . These codes are generally
described by two parameters, say d and κ where d
denotes the minimum number of 0s between 2 1s
in a sequence and κ denotes the maximum num-
ber of 0s between 2 1s in a sequence. When used
with NRZI modulation, the effect of placing d 0s
between successive 1s is to spread the transitions
farther apart, thus reducing the overlap in the chan-
nel response due to successive transitions and thus
reducing of inter-symbol interference. Setting an
upper limit κ on the runlength of 0s occurs that
transitions occur frequently enough so that sym-
bol timing information can be recovered from the
received modulated signal.

Runlength limited codes are commonly denoted
(d, κ). Such codes may be represented by a finite
state sequence machine with κ + 1 states. A code
commonly used in magnetic recording is the Miller
code which is coded as shown in figure 36 which en-
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Table 6: HDB3 violation encoding

Polarity of
Preceding
Pulse

Number of pulses since last bipolar violation

ODD EVEN
+ 000+ -00-
− 000- +00+

sures appropriate transitions for the magnetic pick-
up head.

High Density Bipolar 3 This code is a variant
on alternate mark inversion (AMI) which ensures
that no more than 3 zeros are transmitted together.
It is so called because it has higher density of marks
than AMI, it is bipolar like AMI, i.e. has both +1
and -1 as well as zero, while the 3 in its name is the
maximum number of zeros.

The coding is as follows. When four zeros occur
in the binary (NRZ) signal the AMI waveforms,
which should be entirely zero is replaced by a code
which violates the AMI polarity rule to distinguish
it from a real mark representing a 1. The actual
code transmitted depends on the polarity of the
preceding binary 1 and on whether the number of
binary 1s transmitted since the last HDB3 code
(bipolar violation) is odd or even as shown in fig-
ure 6). Figure 119) is an example showing HDB3
coding of a waveform and comparing it with AMI,
RZ and NRZ waveforms.

Error detection is still available with this code,
because violations of the code rules will be ob-
served, albeit after a few digits have been transmit-
ted beyond the violation because decoding cannot
be done instantaneously.

The Eye Diagram

An important diagnostic technique used in the op-
erational environment for evaluating the perfor-
mance of communication system is the eye pattern
or eye diagram. It is the synchronised superposi-
tion of all possible realisations of the signal of in-
terest viewed within a particular signalling interval
and is recorded by superimposing multiple sweeps
in a storage oscilloscope as illustrated in figure 120).

The interior region of the eye diagram is called the
eye opening.

The eye pattern provides a good deal of informa-
tion about the performance of a data transmission
system.

• The width of the eye opening (A) defines the
time interval over which the received signal
can be sampled without error from intersymbol
interference, it is apparent that the optimum
sampling time is the instant where the eye is
open the widest (t*).

• The sensitivity of the system to timing errors
is determined by the rate of closure of the eye
as the sampling time is varied (slope D above).

• The height of the eye opening, (B), at a speci-
fied sampling time, defines the noise margin of
the system.

• The distortion of zero crossings (c)

• The maximum distortion (E)

When the effect of intersymbol interference is severe
the upper traces cross the lower traces resulting in
a closed eye. In such a situation it is impossible to
avoid errors will occur due to the combined effects
of noise and intersymbol interference in the system.

In the case of an M-ary system the eye pattern
contains (M-1) eye openings vertically above each
other. In linear systems with random data all eye
openings should be identical however in practice
nonlinearities in the communication channel will
lead to asymmetries in the eye pattern.

Digital Passband Transmission

In this section we will be looking at requirements
for the modulation processes of modulation and de-
modulation, and the transmission and receiver fil-
ters for passband transmission. We will concentrate
on the effects of noise which dominates the perfor-
mance of passband systems, and look at the various
trade-offs associated with different passband mod-
ulation techniques.

In digital passband transmission the incoming
data stream is modulated onto a (sinusoidal) carrier
with fixed frequency limits imposed by a band-pass
channel of interest. The major issue of concern is
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the optimum design of the receiver to minimise the
average probability of symbol error in the presence
of noise. The communications channel may be a
microwave radio link, satellite channel etc. The
modulation process involves switching (keying) the
amplitude, phase or frequency in some way accord-
ing to the incoming data. The three basic signalling
schemes amplitude-shift keying (ASK), frequency-
shift keying (FSK) and phase-shift keying (PSK)
are special cases of the analogue amplitude mod-
ulation, frequency modulation and phase modu-
lation respectively and are studied in the labora-
tory experiments associated with this course. Both
PSK and FSK have constant envelope making them
impervious to amplitude nonlinearities commonly
found on microwave channels and they are there-
fore usually preferred to ASK signals.

In our passband model we will assume a
message source emits a symbol every T sec-
onds with the symbols belonging to an alphabet
(m1,m2, . . . ,mN ) of M symbols. Generally M is a
power of two: M = 2k, k is a integer. e.g. a qua-
ternary PCM encoder has alphabet of 4 symbols
(00,01,10,11).

Without prior information we assume that all
symbols are equally likely so we have the symbol
probabilities as

pi = P (mi) =
1

M
for all i

The M -ary output of the message source is send
to a signal transmission encoder which produces
a corresponding vector ~Si made up of N real ele-
ments, one set for each of the M symbols of the
source alphabet and N ≤ M . With the vector ~Si

the modulator constructs a distinct signal of dura-
tion T seconds as the representation of the message

mi produced by the message source. This signal
si(t)) must be of finite energy,

Ei =

∫ T

0

s2
i (t)dt, i = 1, 2, . . . ,M

is real valued and one such signal is emitted every
T seconds. The particular signal chosen depends
on the message to be transmitted and possibly also
on the signals transmitted in previous time slots.
With a sinusoidal carrier the modulator will gen-
erally introduce a step change in the amplitude,
phase, frequency or some combination thereof to
distinguish the signals.

In our passband communication channel we will
assume that it is linear, has a bandwidth large
enough to support the modulated signal si(t) with-
out distortion and that the transmitted signal is
perturbed by an additive white Gaussian noise
(AWGN) process w(t). The received signal will
then be given by

x(t) = si(t) + w(t),

{
0 ≤ t ≤ T
i = 1, 2, . . . ,M

The receiver observes the received signal x(t) for
T seconds and makes a best estimate of the trans-
mitted signal si(t) or message mi. This is accom-
plished first by operating on the received signal x(t)
to produce an observation vector ~x which is then
used together with prior knowledge of the modula-
tion format used in the transmitter and the proba-
bilities p(mi) to produce an estimate of the message
m̂. Noise from the channel makes the decision pro-
cess statistical and prone to errors. The goal is to
design a receiver to minimise the average probability
of symbol error :
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Figure 122: Model of a Passband Transmission System

pe =

M∑

i=1

p(m̂ 6= mi)p(mi)

We assume that the receiver is time synchronised
with the transmitter and knows the instant of time
in which a particular signal is transmitted. In co-
herent detection we also assume that the detector is
phase locked to the transmitter and knows the abso-
lute phase of the signal. If this phase synchronism
is not required then we have non-coherent detection
.

We use the above construction as the basis of
designing the optimum receiver exploiting a geo-
metric representation of the known set of signals
which gives insight and a simplification of detail.

Gram-Schmidt Orthogonalisation

Any set of M energy signals {si(t)} may be repre-
sented as a linear combination of some N orthonor-
mal basis functions φj(t) where N ≤ M in a pro-
cess called Gram-Schmidt Orthogonalisation i.e. we
represent our signals as

si(t) =

N∑

j=1

sijφj(t),

{
0 ≤ t ≤ T
i = 1, 2, . . . ,M

where the coefficients of the expansion are de-
fined by

si1

si2

siN

φ1( )t

φ2( )t

φN( )t

Figure 123: Gram-Schmidt Signal Synthesis
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Figure 124: Gram-Schmidt Signal Decomposition

sij =

∫ T

0

si(t)φj(t)dt

{
i = 1, 2, . . . ,M
j = 1, 2, . . . , N

This is ilustrated in figure 123).

This overlap integral may be thought of as deter-
mining a measure of how like basis function φj(t)
signal si(t) is. The basis functions are orthonormal
i.e. they are each normalised to have unit energy
and they are orthogonal to each other over the in-
terval 0 ≤ t ≤ T .

∫ T

0

φi(t)φj(t)dt =

{
1, i = j
0, i 6= j

Orthogonality simply means that none of the basis
functions can be represented by a linear superposi-
tion of others. The Fourier sine and cosine function
sequences over a finite interval are one example of
an orthogonal set of basis functions.

The coefficients sij are the coefficients of the N

-dimensional vector ~Si which is used to generate
the signal si(t) using a modulator which consists
of N multipliers, each provided with its own basis
function, followed by a summer.

Given a signal si(t) as an input we can use a
bank of N product-integrators or correlators each
with its own basis function input to determine the
set of coefficients sij in the vector ~Si(t) and this

forms the first stage of a detector in the receiver.
This is illustrated in figure 124).

To perform the Gram-Schmidt Orthogonalisa-
tion we begin by defining the first basis function
as

φ1(t) =
s1(t)√

E1

where E1 is the energy of the signal s1(t). The
clearly we have s11 =

√
E1 and φ1(t) has unit en-

ergy as required. Given a second signal s2(t) we
can calculate the coefficient s21 as

s21 =

∫ T

0

s2(t)φ1(t)dt

and we introduce a new intermediate function
which is remainder of this second signal not repre-
sented by the first basis function

g2(t) = s2(t) − s21φ1(t)

which must be orthogonal to φ1(t) over the sam-
pling interval. Normalising this gives us the second
basis function

φ2(t) =
g2(t)

√
∫ T

0
g2
2(t)dt

=
s2(t) − s21φ1(t)
√

E2 − s2
21

where E2 is the energy of the signal s2(t). The
basis function form an orthonormal set as required.
We may continue in this fashion and in general de-
fine

gi(t) = si(t) −
∑

j=1,i−1

sijφj(t)

where the coefficients themselves are defined by

sij =

∫ T

0

si(t)φj(t)dt, j = 1, 2, . . . , i − 1

and from which we define a set of basis functions

φi(t) =
gi(t)

√
∫ T

0
g2

i (t)dt
, i = 1, 2, . . . , N
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Figure 125: Geometric representation of M = 3
signals on N = 2 basis functions.

which form an orthonormal set. If the set of signals
are a linearly independent set then N = M , if not
then we will have less basis functions than signals
N < M .

The Geometric Interpretation of Signals

Once we have obtained a convenient set of basis
functions {φj(t)}, j = 1, 2, . . . , N then each signal
in the set {si(t)}, i = 1, 2, . . . ,M is determined by
the vector of its coefficients.

~Si =








si1

si2

...
siN








, i = 1, 2, . . . ,M

This vector ~Si is called the signal vector and we
may conceptually think of our signals as a set of
M points in N -dimensional Euclidean space called
signal space with the axis corresponding to the N
orthonormal basis functions. This enables us to vi-
sualise our set of signals geometrically and as we
will see simplifies the analysis when noise is intro-
duced. Figure 125) illustrates this with the repre-

sentation of 3 signals, ~S1, ~S2, ~S3 on 2 basis functions
φ1, φ2.

In our geometric interpretation of signals we can
introduce lengths of vectors and angles. The length
of a signal vector ~Si is defined by the inner product
of the signal with itself

|~Si|2 = ~ST
i

~Sj =

N∑

j=1

~S2
ij

This is equal to the energy of the signal Ei which
can be proved by expanding the signals in term of
the basis functions and using the properties of basis
function orthogonality as follows:

Ei =

∫ T

0

s2
i (t)dt

=

∫ T

0





N∑

j=1

sijφj(t)





[
N∑

k=1

sikφk(t)

]

dt

=
N∑

j=1

N∑

k=1

sijsik

∫ T

0

φj(t)φk(t)dt

=
N∑

j=1

s2
ik

For two signal vectors we can calculate the Eu-
clidean distance between them.

|si − sk|2 =

N∑

j−1

(sij − skj)
2

We can also calculate the cosine of the angle be-
tween the two signal vectors defined by

cos θij =
~ST

i
~Sj

|~Si||~Sh|
Two vectors are thus orthogonal or perpendicular

to each other if their inner produce is zero giving
θij = 90◦.

Signals and Noise

If instead of receiving in our bank of N product
integrators the transmitted signal si(t) we receive
signal received from an AWGN channel x(t) given
by

x(t) = si(t) + w(t),

{
0 ≤ t ≤ T
i = 1, 2, . . . ,M

where w(t) is the sample function of a white Gaus-
sian noise process of zero mean and power spectral
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Figure 126: Correlation type demodulator

density N0/2 then the output of correlator j in the
demodulator will be a sample value of a random
variable given by

xj =

∫ T

0

x(t)φj(t)dt

= sij + wj

The first component sij is a deterministic quantity
contributed by the transmitted signal si(t) and the
second component is a sample of a random variable
that arises in the presence of noise at the receiver
input

wj =

∫ T

0

w(t)φ(t)dt

Since w(t) is due to Gaussian white noise and the
basis function has unit energy we can get the simple
result (see standard texts e.g. Haykin p. 487) that
the variance is given by

σ2
wj

=
N0

2

The complete received signal vector may then be
considered to be a vector of N Gaussian random
variables with mean values sij and variances N0/2
which can be written in the form

~x = ~Si + ~w

φ1

φ2

φ3

Observation
vector

x

Signal Vector
si

Noise Vector
w

Received Signal
Point

Message Point

Noise Cloud

Figure 127: A signal with a Gaussian distributed
noise cloud

µxj
= σij

σ2
xj

=
N0

2
for allj

This received signal point may lie anywhere in-
side an observation cloud which is a Gaussian-
distributed cloud centred on the message point as
illustrated right.

We may write a conditional probability density
function which will be the product of the Gaussian
probability density function of each of the elements.
The likelihood functions of an AWGN channel will
therefore be defined by

f ~X( ~X|mi) =
1√
πN0

exp



− 1

N0

N∑

j=1

(xj − sij)
2



 i = 1, 2, . . . ,M

(13)
This is the probability after receiving observation
vector ~X given that the message mi was transmit-
ted.

Equivalence of Matched Filter and Correla-
tion Demodulator

Suppose we have a bank of N filters with their
impulse responses matched to each of the N basis
functions. The N matched filters are time reversed

73



x1

x2

xN

x t( )
Observation

Vector
x

φ1( - )T t

φ2( - )T t

φN( - )T t

Sample
at t T=

Figure 128: Matched Filter Demodulator

x1

x2

xN

φ1( )t

φ2( )t

φN( )t

dt
T

0
∫

dt
T

0
∫

dt
T

0
∫

x t( )
Observation

Vector
x

Figure 129: Correlation Detector

and delayed versions of inputs and will thus have
impulse responses given by

hj(t) = φ(T − t)

The filter output will be the convolution of the
input signal and filter responses

yj(t) =

∫ ∞

−∞
x(τ)hj(t − τ)dτ

=

∫ ∞

−∞
x(τ)hj(T − t + τ)dτ

Suppose then that we sample the output of these
filters at the time t = T . The outputs will then be
given by

yj(T ) =

∫ ∞

−∞
x(τ)φj(τ)dτ

=

∫ T

0

x(τ)φj(τ)dτ

Since by definition the basis signals are zero out-
side the bit interval.

Thus we see that the matched filter demodula-
tor shown in here produces the identical output to
the correlation demodulator. The outputs of both
these demodulators can then be interpreted by the
minimum distance signal transmission decoder to
determine the most likely transmitted message for
a given received signal.

Probability of Error for a passband
system

The minimum distance decision rule implies that
we can divide the N dimensional observation space
Z into a number of decision regions Zi which are
bounded by N -1 dimensional hyperplane bound-
aries. For received signals lying inside a particular
decision region the most likely transmitted message
is the one inside that region. Shown here is the ex-
ample for M = 4 signals and N = 2 dimensions as-
suming that the signals are transmitted with equal
energy and probability.

An error will be deemed to have occurred if when
a symbol mi is sent the received vector ~x does not
lie in the associated decision region Zi. Averaging
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over all possible transmitted symbols we obtain the
average probability of symbol error Pe :

Pe =

M∑

i=1

p(~x does not lie in Zi|mi sent)p(mi sent)

=
1

M

M∑

i=1

p(~x does not lie in Zi|mi sent)

= 1 − 1

M

M∑

i=1

p(~x lies in Zi|mi sent)

which can be written in terms of the conditional
probability function as

Pe = 1 − 1

M

M∑

i=1

∫

Zi

f ~X( ~X|mi)d ~X

The integral is N -dimensional. While this is con-
ceptually straightforward it may be numerically im-
practical except for a few simple cases which we
will now examine further. For more complicated
systems that can be simplified to obtain a maxi-
mum upper bound called the union bound of on
the probability of error (See the standard texts.)

The Maximum Likelihood Decoder

At the receiver we wish to choose the most probable
transmitted symbol given a particular received sig-
nal. We maximise the maximum a posteriori prob-
ability (MAP) criterion for the optimum detector:
i.e. we

Setm̂ = mi ifP (misent| ~X) ≥ P (mksent| ~X)for allk 6= i

Using Bayes theorem we can rewrite this in terms
of transmitted symbol probabilities and likelihood
functions getting

Setm̂ = mi if
pkf ~X( ~X|mk)

f ~X( ~X)
is a maximum for allk = i

where pk is the probability of occurance of the
transmitted symbols which we will consider to be
the same for all symbols and thus independent of
the transmitted signal., f ~X( ~X|mk) is the likelihood

function when mk is transmitted and f ~X( ~X) is the

unconditional joint probability of random vector ~X
and is independent of the transmitted signal. The
MAP rule can then become

Setm̂ = miif ln
(

f ~X( ~X|mk

)

is a maximum for allk = i

Using natural logarithms simplifies the calcula-
tions. Substituting in our Gaussian probability
density function from equation we get

ln
(

f ~X( ~X|mi)
)

= −1

2
N ln(πN0)−

1

N0

N∑

j=1

(xj−sij)
2

The first term in this is a constant and the sec-
ond term is a constant times the Euclidean dis-
tance between the received vector and the signal
vector. Clearly then if all signals are transmitted
with equal probability the most likely transmitted
signal vector is that whose signal point is nearest
to the received vector. This is called minimum dis-
tance detection.

In practice the need for squarers in performing
this decision rule is removed if we recognise that

N∑

j=1

(xj − sij)
2 =

N∑

j=1

x2
j − 2

N∑

j=1

xjsij +

N∑

j=1

s2
ij

The first term in this expansion is independent of
i and can be ignored. The second term is the inner
product of the observation vector ~X and the signal
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Figure 131: MAP detector

vector ~Si and represents the projection of the re-
ceived signal on each of the message signal vectors.
The final term is the energy of the transmitted sig-
nal si(t) and may be viewed as a bias term serving
as a bias term for signal sets that have unequal en-
ergies, such as PAM. The decoder based on this
decision rule then takes on the form as shown in
figure 131).

Coherent Binary Phase Shift Keying (PSK)

In coherent binary phase shift keying (PSK) a phase
shift of φ in a carrier modulated signal is used to
distinguish the binary symbols 0 and 1. The two
signals are therefore given by

s1(t) =

√

2Eb

Tb
cos(2πfct)

s2(t) =

√

2Eb

Tb
cos(2πfct + π)

= −
√

2Eb

Tb
cos(2πfct)

where fc is the carrier frequency. This system
may be represented using a single basis function

φ1(t) =

√
2

Tb
cos(2πfct), 0 ≤ t ≤ Tb

with the two signal vectors amplitude amplitudes
given by

φ1

Region
Z1

Region
Z2

Decision
Boundary

√E−√E

s1 s2

Figure 132: Signal Space Diagram for Binary PSK

s1 = −
√

Eb

s2 =
√

Eb

where Eb is the signal energy which is also in this
case the energy per bit

A coherent binary PSK system is therefore char-
acterised by having a signal space that is one di-
mensional with a signal constellation consisting of
two message points of equal and opposite amplitude
Such signals with equal energy and a cross corre-
lation coefficient of -1 are called antipodal. This
signal space diagram is shown in figure 132). If the
symbols are equiprobable then the rule for decid-
ing which symbol was transmitted is to choose the
closest message point. There is therefore a decision
threshold midway between the two signal points.
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As can be seen from the signal space diagram the
probability of error of for a symbol will be given by
the area under the probability density function ly-
ing at the wrong side of the decision boundary. For
additive white Gaussian noise with a power spectral
density of N0/2 this will be given by

Pe =
1

2
erfc

(√

Eb

N0

)

and if the symbols are equiprobable this will also
be the average probability of error per symbol. If
we set the carrier frequency fc to zero we have a
bipolar NRZ baseband transmission system and so
not surprisingly we have the same average probabil-
ity of symbol error as calculated for such a system.

Generation of a coherent binary PSK may simply
be done by encoding the binary data as a bipolar
NRZ signal and multiplying the result by the carrier
basis function as shown in figure 133). Detection
is carried out by multiplying the received signal by
a locally generated coherent reference signal φ1(t),
integrating over the symbol period and comparing
the output with a threshold amplitude of zero to
determine if a 1 or 0 was sent (see figure 134)).

Assessment
Deadline: 2009-11-28 23:59:00
No Questions: 1
Time Allowed: 10 min

Coherent Binary Amplitude Shift Keying
(ASK)

Amplitude shift keying, also called Pulse Ampli-
tude Modulation (PAM) involves modulating the
amplitude of a sinusoidal carrier to represent the
signals. There is one (carrier) basis function given
by

φ1(t) =

√
2

Tb
cos(2πfct), 0 ≤ t ≤ Tb

In the case of binary PAM an amplitude of zero
represents binary zero and an amplitude of

√
E rep-

resents a 1. The signal space diagram is therefore
one dimensional as shown, with signal vectors

s1 = 0

s2 =
√

E

φ1

Region
Z1

Region
Z2

Decision
Boundary

0 √E

s1 s2

Figure 135: Signal Space Diagram for Binary ASK
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Figure 136: Gray coding

Note that with PAM the different signals are of
different energies. We usually wish to work with the
energy per bit which for binary PAM as described
here will be given by.

Eb = E/2

From the signal space diagram it is obvious that
the signal points are at half the distance of those
for PSK and the probability of error per symbol
will be given by

Pe =
1

2
erfc

(

1

2

√

E

N0

)

=
1

2
erfc

(√

Eb

2N0

)

i.e. such a binary amplitude shift keyed system
requires twice the energy per bit to achieve the
same probability of symbol error as the coherent
binary phase shift keyed system.
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Figure 134: Binary PSK Receiver

M-ary Amplitude Shift Keying The ampli-
tude shift keying system can obviously be extended
to transmit M -ary data using M different signal
levels. Generally we choose to transmit a power of
2, M = 2k levels in an M -ary transmission system
for compatibility with binary data systems. Shown
in figure 136) is the signal space diagram for some
M -ary ASK systems. Note that in this figure the
Gray coding is used for the binary codes. Such cod-
ing ensures that adjacent signals differ by only one
bit. Since the most probable errors are for adjacent
signal points Gray coding of the message signals en-
sures that signal bit errors are the most likely thus
minimising the bit error rate for a particular sym-
bol error rate.

There is one basis function representing the car-
rier with the signal vectors values are given by

si = (2m − 1 − M)d, m = 1, 2, . . . ,M

where d is half the distance between adjacent sig-
nal points. The energy of the M th signal point will
be given by

Em = (2m − 1 − M)2d2

from which we calculate the average error per
signal (assuming that all signals are equal probable)
as follows

Eav =
1

M

M∑

m=1

Em =
d2

M

M∑

m=1

(2m − 1 − M)2

=
d2

M

(
1

3
M(M2 − 1)

)

= d2(M2 − 1)/3

Each M -ary signal carries log2 M bits of infor-
mation so the average transmission energy per bit
is given by.

Eb =
d2(N2 − 1)

3 log2 M

In order to calculate the symbol error rate for
equiprobable symbols we see that the M signal
points are separated by m − 1 decision thresholds
midway between adjacent points. Therefore for the
outside levels the probability of symbol error will
be given by
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Figure 137: Calculation of symbol error rate for M-ary ASK

Pe =
1

2
erfc





√

d2

N0





The inside signal points, however, can have an
error on either side and therefor have twice this
probability of error. The total probability of sym-
bol error per transmission will therefore be given
by

Pm =
M − 1

M
erfc





√

d2

N0





=
M − 1

M
erfc

(√

(3 log2 M)Eb

(M2 − 1)N0

)

when substitution is made for the average energy
per bit. The symbol error rate versus signal to noise
ratio for some different values of M is plotted in
figure 138).

Assessment
Deadline: 2009-11-28 23:59:00
No Questions: 1
Time Allowed: 5 min

Coherent Binary Frequency Shift Keying
(FSK)

In a binary frequency shift keyed system (FSK) the
signals are distinguished from each other by having
different frequencies and may be described by

P
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Figure 138: Probability of symbol error rate versus
signal to noise ratio for M-ary ASK
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Figure 139: Signal Space Diagram for coherent Bi-
nary FSK

si(t) =

√

2E

Tb
cos(2πfit)

where i = 1, 2 and the transmitted frequency is
given by

ff =
nc + i

T
(14)

where nc is some fixed integer. This form is an
example of continuous-phase frequency shift key-
ing (CPFSK) and is also called Sunde’s FSK . The
condition expressed in equation 14) that the car-
rier frequencies must be an integral multiple of the
symbol frequency ensures that the basis functions
given by

φ(t) =

√
2

Tb
cos(2πfit)

satisfy the orthogonality conditions.

The signal space diagram for binary FSK is
therefore two dimensional with signal vectors given
by

sij =

{ √
E i = j

0 i 6= j

as shown.

Note that the number of frequencies to be trans-
mitted can be increased to M for an M -ary trans-
mission system producing an M dimensional signal
space diagram.

The Euclidean distance between the two message
points for binary FSK is equal to

√
2Eb and the

decision boundary for equiprobable symbols will lie
as a diagonal line mid way between the two message
points. The average probability of symbol error for
equal energy binary signals depends only on the
distance between the message points in signal space
and so will be given by

Pe =
1

2
erfc

(√

Eb

2N0

)

We thus see that we have to double the bit signal-
to-noise ratio in order to maintain the same bit er-
ror rate as a coherent binary PSK system.

Generation of coherent binary FSK simply re-
quires an on-off level encoder alternatively switch-
ing the two frequency basis functions which are
then transmitted as shown. In this case we are as-
suming that the two oscillators are synchronised ap-
propriately to maintain the continuous phase con-
dition. We could alternatively use a single voltage
controlled oscillator whose frequency is shifted in
accordance with the continuous phase requirement.

To detect the original binary sequence given a
noisy received signal x(t) we use two correlators
supplied with locally generated coherent reference
versions of the basis signals φ1(t) and φ2(t). The
correlator outputs are subtracted and the difference
compared with a zero threshold to determine which
symbol was most likely sent.

Coherent Minimum Shift Keying (MSK) In
the coherent detection of a binary FSK signal the
phase information in the received signal was not
fully exploited other than to synchronise the re-
ceiver with the transmitter. With proper utilisa-
tion of the phase information when performing de-
tection the noise performance can be improved sig-
nificantly at the expense of increased receiver com-
plexity.

This is achieved by using a deviation ratio of a
half as compared to one in FSK The signal space
diagram for MSK has four signal points with two
representing symbol 1 and two representing symbol
0. The average probability of is the same as for PSK
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Figure 141: Receiver for coherent Binary FSK
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however this improved performance is achieved by
detector observation over two symbol periods for
each symbol. MSK is an example of a modulation
scheme with memory - there is a correlation from
one symbol period to the next and as such is consid-
ered beyond the scope of this course. It is however
an important technique used in practice.

Coherent M-ary Phase Shift Keying
(MPSK)

Digital phase shift keying can be extended from
binary to an M -ary transmission system by using
M different phases of the carrier to represent the
signal. The set of signals will then take the form

sm(t) =

√

2E

T
cos

(

2πfct +
2π

M
(m − 1)

)

where E is the signal energy, fc the carrier fre-
quency and m = 1, 2, . . . ,M . Such a set of signals
can be represented using two basis functions with
the same carrier frequency but in quadrature (with
a π/2 phase shift) as follows

φ1(t) =

√

2

T
cos(2πfct)

φ2(t) = −
√

2

T
sin(2πfct)

The m signal vectors will take the co-ordinates

sm1 =
√

E cos

(
2π

M
(m − 1)

)

sm2 =
√

E sin

(
2π

M
(m − 1)

)

We therefore have a two-dimensional signal space
map with the M signal points equally spaced
around a circle of radius

√
E . Shown in figure 142)

are the cases for M = 4 (called quadriphase-shift
keying (QPSK)) and M = 8. Note the use of Gray
encoding again to minimise the bit error rate for a
given symbol rate.

Shown in figure 143) is a block diagram for a
QPSK transmitter. The incoming binary sequence
is transformed by a non-return to zero level encoder
into a polar form which is then split into two chan-
nels off odd and even bits which are then used to

M=4

11

01

00

10

M=8

110

111

011

000

010

100

001

101

Figure 142: Some dignal Space Diagrams for M-ary
PSK

modulate a pair of quadrature carriers. The result
of a pair of PSK signals which may be detected
independently due to their orthogonality. We will
use this in determining the probability of error for
QPSK The two PSK signals are added to produce
the transmitted QPSK signal.

The QPSK receiver has a pair of correlators pro-
vided with a locally generated pair of coherent syn-
chronised quadrature reference signals. The output
of these are compared with a threshold of zero to
determine if a 1 or 0 was sent and the two binary
sequences are multiplexed together to generate the
original binary sequence. The receiver is essentially
two PSK receivers in parallel using quadrature fre-
quency references and generating alternate odd and
even bits.

Except for the cases of M = 2 and M = 4 the
calculation of the probability of symbol error for
M -ary PSK does not reduce to a simple form. We
will perform this calculation for the case M = 4
(QPSK).

Calculation of Error Rate for QPSK We
show here again the signal space diagram for QPSK
indicating the decision regions and the distance be-
tween adjacent signal points which is given by

Ec =
√

2E

If we look at each point we see that we can consider
it to have two orthogonal PSK systems with the dis-
tance between channels as above. The probability
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Figure 145: Signal space diagram for QPSK

of error for each of these independent channels will
be given by

Pe,2 =
1

2
erfc

(√

E

2N0

)

From this we can determine the probability of there
being a correct decision for this message point to
be

Pc,4 = (1 − Pe,2)
2

and thus the probability of symbol error for QPSK
is given by

P4 = erfc

(√

E

2N0

)

− 1

4
erfc2

(√

E

2N0

)

Substituting for the average energy per bit Eb =
E/2 and taking the approximation that the signal
to noise ratio is not small we find that for QPSK
the probability of symbol error will be given by

ifE/N0 ≫ 1thenPe ≈ erfc

(√

Eb

N0

)

With Gray encoding of the incoming dibits (sym-
bols) we find that the bit error rate of QPSK is
exactly

M=64

M=32

M=16

M=8

M=4

Figure 146: Rectangular QAM Constellations

Pe =
1

2
erfc

(√

Eb

N0

)

which is the exactly the same as for PSK. This we
expect since Gray encoded QPSK essentially con-
sists of the transmission of two independent PSK
channels. However QPSK achieves this bit error
rate with half the bandwidth requirements of PSK.

Quadrature Amplitude Modulation
(QAM)

In M -ary PSK the signal amplitude is the same for
all signals thus constraining the signal points to a
circular constellation. If this constraint is removed
and the in-phase and quadrature signal components
are allowed to vary independently we have a scheme
called quadrature amplitude modulation (QAM).
In this case we can have any signal constellation
we choose. QAM waveforms are a combination of
PAM and PSK. The basis functions are as for PSK.

We may choose any combination of M1 -level
PAM and M2 -level PSK to give an M = M1M2

level QAM signal constellation. Figure 146) shows
some rectangular signal constellations for different
values of M . The optimum signal constellation will
be that which requires the least average power for
a given minimum distance between signal points.
For M = 4 this will be when the four points lie on
a circle and the resulting signal constellation is the
same as that for QPSK. For M = 8 the optimal
signal constellation consists of the points lying on
two circles as indicated in figure 147). For M ≥ 16
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Figure 148: Square Signal space diagram for M=16,
showing division into two 4-ary PAM channels

there are many more ways of building up the signal
constellation however rectangular signal constella-
tions have the distinct advantage that they can be
generate as two PAM signal impressed on the phase
quadrature carriers and they are easily demodu-
lated. Also for M ≥ 16 the average transmitter
power required for the rectangular constellation is
only slightly worse than the best M -ary QAM sig-
nal constellation.

Calculation of symbol error rate for QAM

Since the two quadrature components are orthog-
onal they can be detected independently without
interference. The rectangular QAM constellation
can thus divided into two independent polar ASK

signals, and the probability of error calculated sep-
arately for each before combining to find the over-
all probability of symbol error as was done for the
example of QPSK. Here we will perform the calcu-
lation for a square QAM constellation as shown in
figure 148) for M = 16. When Gray encoded we see
that this constellation consists of two independent
L-ary PAM signals such that

L =
√

M

From our calculation for the probability of error
for M -ary PAM we have the probability of error for
each channel to be given by

PL =
L − 1

L
erfc





√

d2

N0





where 2 d is the distance between adjacent signal
points. From this we calculate the probability of a
correct decision for each channel and thus find that
the overall probability of error for the M -ary QAM
signal is given by

PM = 1 − (1 − PL)2

≃ 2PL

The average energy per transmission for each
PAM channel is given previously, and since QAM
has two PAM channels the average energy for the
QAM will be twice that and thus given by

Eav =
2d2(L2 − 1)

3

From this we can calculate the average energy per
bit given that each signal transmits log2 M bits and
substituting for L we get

Eb =
2d2(M − 1)

3 log2 M

Putting all these together we find for a square M
-ary QAM constellation the probability of symbol
energy as a function of bit energy to noise ratio to
be given by

PM ≃ 2

√
M − 1√

M
erfc

(√

(3 log2 M)Eb

2(M − 1)N0

)
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Substituting in M = 4 gives the same probability
of symbol error as was calculated for QPSK as ex-
pected.

Assessment
Deadline: 2009-11-28 23:59:00
No Questions: 2
Time Allowed: 5 min

Non-coherent Modulation

Coherent detection requires knowledge of the carri-
ers waves phase reference thus providing optimum
error performance with the digital modulation for-
mat of interest. This knowledge may not be practi-
cable in which case we resort to non-coherent detec-
tion. Here we will consider non-coherent orthogonal
modulation including differential phase shift keying
and non-coherent binary frequency shift keying as
specific examples.

If we transmit a signal

si(t) =

√

2E

T
cos(2πfit), 0 ≤ t ≤ T

Then the received signal, from an AWGN channel,
with an unknown phase shift θ will be given by

s(t) =

√

2E

T
cos(2πfit + θ) + w(t)

=

√

2E

T

(

cos(θ) cos(2πfit)

− sin(θ) sin(2πfit)

)

quad + w(t), 0 ≤ t ≤ T

where we have applied well a known trigono-
metric identity. If we apply this to a pair of
correlators with reference signals

√

2/T cos(2πfit)

and
√

2/T sin(2πfit) we will get output signals√
E cos θ and −

√
E sin θ. Squaring these, adding

and taking the square root will remove the depen-
dence on the unknown phase θ. The quadrature
receiver is thus as in figure 149).

We can then use this receiver to detect two or-
thogonal signals s1(t) and s2(t) which are sent over
a noisy channel which shifts the carrier by an un-
known amount. We assume that the phase shifted
signals, denoted g1(t) and g2(t), remain orthogo-
nal and have an energy E regardless of the phase

shift and that the channel has additive white gaus-
sian noise with power spectral density N0/2. The
received signal will then be

x(t) =

{
g1(t) + w(t) 0 ≤ t ≤ T
g2(t) + w(t) 0 ≤ t ≤ T

The generalised receiver, shown in figure 150),
will be used to distinguish between s1(t) and s2(t)
regardless of carrier phase. This consists of a pair
of non-coherent (quadrature) filters matched to the
basis functions. The filter outputs are envelope de-
tected, sampled and compared to product the out-
put thus removing the need for a phase reference.

The average probability of error for such a non-
coherent receiver can be shown to be

Pe =
1

2
exp

(

− E

N0

)

where E is the energy per symbol. Derivation of
this is considered beyond this course.

The need for the envelope detector in the non-
coherent receiver is apparent if we consider the out-
put of the quadrature receiver for signals with a
phase of 0 and 180 degress.

In the first case there is a peak at the sampling
instant while in the latter a trough. To avoid poor
sampling that arises without prior knowledge of θ
we thus use an envelope detector as its output is
completely independent of the phase mismatch.

Non-coherent FSK

In binary FSK the signal is given as

si(t) =

√

2E

Tb
cos(2πfit)

where i = 1, 2 and the transmitted carrier fre-
quency is given by

fi =
nc + i

T

The non-coherent receiver for this kind of signal
consists of a pair of filters - one matched to each of
the transmitted frequencies followed by an envelope
detector. The output envelopes are sampled and
compared to determine the most likely transmitted
symbol as shown.

This form of non-coherent binary FSK is a spe-
cial case of non-coherent orthogonal modulation for
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which we find the average probability of symbol er-
ror (and also the bit error rate) as

Pe =
1

2
exp

(

− Eb

2N0

)

Differential Phase Shift Keying (DPSK)

Differential phase shift keying may be viewed as a
non-coherent version of PSK. The transmitter elim-
inates the need for a coherent reference by differ-
entially coding the input binary signal and then
employing phase shift keying. Effectively to send a
0 we advance the phase by π and to send a 1 we
leave the phase unchanged. The receiver measures
the relative phase difference between the waveforms
received during two successive symbol intervals. If
the phase error changes sufficiently slowly it can be
considered to be constant over the two bit intervals.

DPSK may be considered as an example of non-
coherent orthogonal modulation when it is consid-
ered over two bit intervals. We can define then
define the two signals representing symbols 1 and 0
respectively as

s1(t) =







√
Eb

2Tb
cos(2πfct) 0 ≤ t ≤ Tb

√
Eb

2Tb
cos(2πfct) Tb ≤ t ≤ 2Tb

for where the phase is unchanged between signal
intervals and

s2(t) =







√
Eb

2Tb
cos(2πfct) 0 ≤ t ≤ Tb

√
Eb

2Tb
cos(2πfct + π) Tb ≤ t ≤ 2Tb

where there is a π phase change across signal inter-
vals.

These two signals are orthogonal over the interval
0 ≤ t ≤ 2Tb and the bit error rate for DPSK is thus
given by

Pe =
1

2
exp

(

−Eb

N0

)

In figure 7) we show an example illustrating the
DPSK encoding of a binary signal. Note that the
sequence starts with an (arbitrary) reference bit.

The transmitter (figure 153)) consists of a logic
network connected to a 1 bit delay element to gen-
erated the differentially encoded binary sequence.

This sequence is amplitude encoded and used to
modulate the carrier signal to generate the DPSK
signal.

The optimum receiver for binary DPSK is shown
in figure 154).

This receiver equipped with an in-phase and
quadrature channel which measures the co-
ordinates of the signal at time t = Tb and time
t = 2Tb respectively. These two signal points are
compared to determine if they map to the same
signal point or they are π out of phase.

To complete the test below you may need the
Complementary Error Function Tables (Section ).

Assessment
Deadline: 2009-11-28 23:59:00
No Questions: 1
Time Allowed: 5 min

Comparison Of Modulation Tech-
niques

We can compare the various modulation techniques
on the basis of the SNR required to achieve a spec-
ified probability of error subject to some constraint
such as a fixed data rate of transmission. The re-
sults are shown in figure 155).

For multiple phase signals the channel bandwidth
required is simply that of the equivalent low pass
signal. We assume that our pulse has duration
T and occupies a bandwidth B = 1/T . Since
T = (log2 M)/R so as M is increased the channel
bandwidth required decreases and we have a band-
width efficiency, defined as bit rate to bandwidth
ratio of

R

B
= log2 M

For PAM the most efficient transmission is single-
sideband (SSB) and we have approximately B =
1/(2T ) so the bandwidth efficiency is given by

R

B
= 2 log2 M

In the case of QAM we have two orthogonal car-
riers each having a PAM signal however the signal
must be transmitted via double sideband. Thus
QAM and PAM have the same bandwidth efficiency
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Table 7: Generation of a DPSK Signal
Message Se-
quence {bk}

1 0 0 1 1 1 0 0 0

Encoded Se-
quence {dk}

1 1 0 1 1 1 1 0 1 0

Transmitted
Phase

0 0 π π π π π 0 0 π

Input
binary

sequence

Logic
Network

Amplitude-
level

shifter

Delay
Tb

{ }dk

{ }dk-1

{ }bk DPSK
signal

( )2
2

T
f tccos π

Figure 153: DPSK Transmitter
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Figure 154: DPSK Receiver
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when bandwidth is referenced to the bandpass sig-
nal.

Orthogonal signals (such as FSK) have com-
pletely different bandwidth requirements. If we use
M = 2k orthogonal carriers with a minimum fre-
quency separation of 1/(2T ) for orthogonality the
bandwidth is given by M/(2T ) giving a bandwidth
efficiency of

R

B
=

2 log2 M

M

A meaningful comparison of these results is based
on the normalised data rate R/W versus the SNR
per bit required to achieve a given probability of
error. This is plotted in here for PM = 10−5. We
observe that in the case of PAM, QAM and PSK
increasing M results in a higher bit rate to band-
width ratio however this is achieved at the expense
in the SNR per bit. Thus these modulation tech-
niques are appropriate for bandwidth limited com-
munication channels where there is sufficiently high
SNR to support increases in M . Telephone chan-
nels and digital microwave channels are examples
of such bandwidth limited channels.

In contrast M -ary orthogonal signals such as
FSK have an increasing bandwidth requirement
as M increases giving a decreasing channel band-
width. However the SNR per bit required to
achieve a given error probability decreases as M
increases. Thus such signals are appropriate for
power limited channels that have sufficiently large
bandwidth to accommodate a large number of sig-
nals. As M increases the error probability can be
made as small as required provided that the SNR
is grater than the Shannon limit of -1.6dB.

Assessment
Deadline: 2009-11-28 23:59:00
No Questions: 1
Time Allowed: 3 min

Synchronisation in Passband Systems

Carrier Synchronisation

When coherent detection is used knowledge of both
the frequency and phase of the carrier is required.
If the power spectrum of the signal contains a dis-
crete component at the carrier frequency then a

0 T
t

g(t)

Matched
filter
output

a

a2T

TT-∆0T T+∆0T0 2T

Figure 157: Early-Late detection using a matched
filter

narrow-band phased locked loop could be used to
provide the carrier reference however such a dis-
crete reference component carries no information
and its transmission represents a waste of power.

Without a d.c. component the receiver requires
a suppressed carrier-tracking loop for providing a
coherent subcarrier reference. One example of this,
shown in figure 156), is the M th power loop for
M -ary PSK. (For M = 2 this is called a squaring
loop). The problem with this type of loop is that
there is are M phase ambiguities of in the generated
reference. The M th order Costas Loop which may
also be used for carrier recovery also has this phase
ambiguity problem. One method of resolving this
is to use differential encoding resulting in coherent
detection of differentially encoded M -ary PSK. This
has a small degradation with respect to the noise
performance.

Symbol Synchronisation

To perform demodulation the receiver has to know
when symbols start and end so as to determine the
correct time to sample and quench the product in-
tegrators. Estimation of the symbol timing is called
clock recovery or symbol synchronisation. A clock
could be transmitted along with the data signal.
This minimises the time for clock recovery but re-
sults in a waste of transmitted power.
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A good method for extracting the clock from the
demodulated data signal is to use non-coherent de-
tection. If we consider a rectangular pulse as shown
in figure 157), we observe that the matched filter
output is at a maximum at time t = T and that it
is symmetric about that point. We obviously want
to sample at that point. If we take an early sample
at T −∆0T and a late sample at T +∆0T then ob-
viously the two samples will be equal to each other
and smaller than the peak value. The error signal
or difference between these two values will be zero
and the proper sampling time is mid-way between
the early and late points. Figure 158) shows an
example of symbol synchroniser which exploits this
idea. Two correlators integrate the data signal in-
tegrated over the full time T with one starting early
by ∆0T and the other late by ∆0T . The difference
in the output of these two correlators generates an
error signal which is low-pass filtered and used to
drive a voltage controlled oscillator at the symbol
rate. When this local clock is at the correct fre-
quency we will be at the equilibrium point and the
error signal will be zero.

Spread-spectrum Modulation

So far we have been looking at the importance
of providing efficient utilisation of bandwidth and
power in digital transmission systems. Sometimes
these requirements are sacrificed to enable other ob-
jectives to be met. For example we may wish to pro-
vide secure transmission in a hostile environment so
that the signal is not easily detected by unautho-
rised listeners. One class of signalling techniques
used to achieve this is called spread-spectrum modu-
lation . The primary advantage of spread spectrum
modulation is its ability to reject interference either
unintentional or intentional from a hostile jamming
transmitter.

Spread spectrum modulation may be defined by

1. Spread spectrum is a means of transmis-
sion in which the data sequence occupies
a bandwidth in excess of the minimum
bandwidth necessary to sent it

2. The spectrum spreading is accomplished
before transmission by use of a code that
is independent of the data sequence. The
same code is used in the receiver (in

1 2 m

Logic

...

Clock

Output
Sequence

Flip-flop

Figure 159: Feedback shift register

synchronism with the transmitter) to de-
spread the received signal to recover the
original data sequence.

Spread spectrum may be not only for its resistance
to jamming or interference but may also be used to
minimise multiple path effects in ground based mo-
bile radio applications and to allow multiple access
communications allowing a number of independent
users to share a common channel without external
synchronisation.

There are two main types of spread-spectrum
modulation - direct-sequence spread spectrum
where a narrow band code modulates a pseudo-
random wideband code which is transmitted and
frequency-hopping spread-spectrum where the car-
rier frequency carrying the data is change in a
pseudo-random manner. Both these rely on the fre-
quency spreading properties of a noise-like spread-
ing code called a pseudo-random or pseudo-noise
sequence .

Pseudo-Random Sequences

A pseudo-noise (PN) sequence has a noise-like
waveform and is usually generated using a feedback
shift register shown schematically in figure 159).
This consists of an shift register on m flip-flop
stages and a logic circuit interconnected to form
a multiple-loop feedback circuit. A single timing
clock regulators the shift register stages and at each
pulse the state of each flip-flop is shifted to the next
one down the line. With each clock the logic com-
putes a function of the Boolean state of the flip-
flops which is fed back into the shift-register in-
put. If the feedback logic consists only of modulo-2
adders then the feedback shift register is said to be
linear. In this case the zero state (all flip-flops set
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Clock
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Sequence

Figure 160: Maximum length m=3 sequence gen-
erator

to zero) is not permitted as the feedback logic out-
put would the be zero and the output would be a
train of zeros. Thus the period of a PN sequence
produced by a linear feedback shift register with m
flip-flops cannot exceed 2m − 1 and if the period
is exactly 2m − 1 it is called a maximum-length-
sequence or m-sequence.

Figure 160) shows an example of a maximum
length m = 3 sequence generator. The input is
equal to the modulo sum of the first and third flip-
flops. If the initial state of the shift register is 100
the succession of states will be as follows: 100, 110,
111, 011, 101, 010, 001, 110, generating the out-
put binary sequence 00111010 which repeats with
a period N = 23 − 1 = 7.

Maximum length sequences have many of the
properties of a truly random binary sequence (one
in which the probability of 1 and 0 are equal). The
most useful property for spread spectrum communi-
cations is that they have similar envelopes for their
power spectral densities - a sinc2 function which
is continuous for a random binary wave but which
comprises a series of delta functions 1/(NT ) apart
for a pseudo-random sequence.

In general we want to find for a particular m
the feedback logic to generate a maximum length
sequence. This can be done by looking up extensive
tables found in the literature.

Assessment
Deadline: 2009-11-28 23:59:00
No Questions: 1
Time Allowed: 5 min
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Figure 161: Waveforms illustrating direct-sequence
spread spectrum

Direct-Sequence Spread Spectrum

One method of widening the bandwidth of a data
sequence is to use modulation, multiplying the nar-
row band data sequence waveform b(t) by a broad-
band pseudo-noise sequence signal c(t) to generate
the transmitted signal

m(t) = c(t)b(t)

The product signal will have a spectrum equal
to the convolution of the two separate spectra and
which will therefore be nearly the same as the wide-
band PN signal spectrum. Thus the PN sequence
is called a spreading code. The process is illus-
trated in figure 161). We see that information bit
is chopped into a number of small time increments
(called chips).

The received signal r(t) consists of the transmit-
ted signal plus some additive interference i(t) and
will be thus be given by

r(t) = m(t) + i(t)

= c(t)b(t) + i(t)

To recover the original message signal the re-
ceived signal is applied to a demodulator consist-
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ing of a multiplier followed by an integrator. The
multiplier is supplied with a locally generated PN
sequence which is an exact replica of that used in
the transmitter and is in synchronism with it. The
multiplier output will then be given by

z(t) = c2(t)b(t) + c(t)i(t)

= b(t) + c(t)i(t)

where we have made use of the fact that c2(t) = 1
for all t. The original signal is multiplied twice
by the PN sequence and is recovered back to its
narrowband form while the interference is multi-
plied once and is spread in spectrum at the multi-
plier output. An integrator after the multiplier can
therefore filter out the original data sequence from
the interference.

We thus see that use of the spreading code pro-
duces a wide-band transmitted signal which ap-
pears noise like to a receiver which has no knowl-
edge of the spreading code. The longer the pseudo-
random sequence used the more noise-like the
transmitted signal appears and the harder it is to
detect.

We have shown baseband direct-sequence spread
spectrum for illustration however the technique
may be incorporated into other passband modula-
tion schemes such PSK (giving a direct-sequence
spread binary phase-shift keyed (DS/BPSK) sig-
nal).

An important parameter in spread-spectrum
modulation which we may want is the gain in SNR
obtained. This is called the processing gain. On the
simple argument that the noise is spread in spec-
trum by 1/Tc while the signal has a spectral width
of 1/Tb we can see that

PG =
Tb

Tc

This expression is properly derived in Haykin
p.592

Frequency-hop Spread Spectrum

Another technique for accomplishing spread-
spectrum communications is to use a PN sequence
to randomly hop the data-modulated carrier from
one frequency to the next. In this case the spectrum
is spread sequentially rather than instantaneously

M-ary FSK
Modulator

Band-
pass
filter

Frequency
synthesizer

PN Code
Generator

Mixer

Binary
data

FH/ MFSK
Signal

Carrier

...

Figure 162: Frequency Hop Transmitter

as for direct-sequence spread spectrum. This is
called frequency-hop (FH) spread spectrum and a
common modulation format is to use M -ary FSK
giving rise to the combination technique FH/MFSK

In slow-frequency hopping the symbol rate R of
the MFSK signal is an integer multiple of the hop
rate Rh that is several symbols are transmitted
per frequency hop. Figure 162) shows an example
of a transmitter an receiver for achieving this. It
involves frequency modulation followed by mixing
with a frequency generated by a frequency synthe-
siser controlled by the pseudo-random code genera-
tor. The output is filtered to select the sum term in
the mixing signal. A successive k bits from the PN
code generator control synthesiser allowing the fre-
quency to hop over 2k distinct values. For a single
hop the spectrum as the same as for the correspond-
ing MFSK signal however over the complete range
of 2k frequency hops the spectrum occupies a much
larger bandwidth- up to several GHz with current
synthesiser technologies which is an order of mag-
nitude larger than with direct-spread spread spec-
trum. In the receiver the received signal is mixed
down using a frequency synthesiser driven exactly
as the one in the transmitter and the resultant out-
put bandpass filter before normal MFSK detection
is used.

In fast-frequency hopping the hop rate Rh is an
integer multiple of the MFSK symbol rate R and
the carrier frequency will change several times dur-
ing the transmission of one symbol. This is used
to defeat a smart jammer which might measure the
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spectral content of the transmitted signal and re-
tune the jamming frequency to that portion of the
frequency band. Non-coherent detection is used at
the receiver with either a majority rule made on the
frequency hop chips of the dehopped MFSK symbol
or, optimally, likelihood functions are computed as
functions over the total energy received over the K
chips of a signal and the larger one selected.

Spread Spectrum Synchronisation

A spread spectrum sequence communication sys-
tem relies on synchronisation between the locally
generated PN sequence at the receiver and that
used to transmit the sequence. This may be done
in two parts: acquisition and tracking. The ac-
quisition stage aligns the two PN codes quickly by
measuring the correlation between the received sig-
nal and local PN code. Once aligned to within a
fraction of a chip in this way a decision-rule and
search strategy is used to determine whether the
two codes are in synchronism and what to do if
they are not. Once aligned tracking is performed
using phased-lock loop techniques.

Code-division multiplexing

This technique relies on using separate PN codes for
individual users allowing a multitude of users on a
common communication channel without frequency
or time allocation. However an important concern
in a code-division multiplex system is the partial
cross-correlation of PN sequences which gives rise

to cross-talk between any two users sharing a com-
mon communication channel. Maximum length se-
quences do not generally exhibit a good partial
cross-correlation and for this reason so called Gold
Sequences are used which exhibit a very low cross
correlation.

Modems

The word ’Modem’ is derived from two words;
’MODulator’ and ’DEModulator’. From a data
communications perspective, a modem is a device
that converts the digital bit stream into analogue
signals that are suitable for transport over standard
voice circuits.

Typical modems operate using Frequency Shift
Keying (FSK), Phase Shift Keying (PSK), Ampli-
tude Shift Keying (ASK), or a combination of basic
schemes.

Frequency Shift Keying (FSK)

Bell 103 Modem This modem supports asyn-
chronous rates up to 300 baud using Frequency
Shift Keying (FSK) modulation. Different carrier
frequencies are used at each end of a 103 modem
link, allowing full-duplex operation on a 2-Wire
switched voice circuit.

The Originating modem transmits signals of ei-
ther 1070 Hz (Space) or 1270 Hz (Mark). The An-
swering modem transmits signals of either 2025 Hz
(Space) or 2225 Hz (Mark).

This modem was predominant until the early
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1980s, when the Bell 212 modems became avail-
able.

V.21 Modem This modem supports asyn-
chronous transmission at rates up to 300 baud.
Modulation is Frequency Shift Keying (FSK). In
this modulation scheme, different carrier frequen-
cies are used between the Originating and Answer-
ing modems. A Space is transmitted by a change
in carrier frequency of +100 Hz. A Mark is rep-
resented by a change in carrier frequency of -100
Hz. For the carrier frequency of 1080 Hz, a Space
is represented by a 1180 Hz signal and a Mark is
represented by a 980 Hz signal. For the carrier fre-
quency of 1750 Hz, a Space is represented by a 1850
Hz signal and a Mark is represented by a 1650 Hz
signal.

This modem modulation scheme is specified in
CCITT (now ITU-T) Recommendation V.21, nat-
urally.

Bell 202 Modem This Bell System modem was
designed to support asynchronous data at rates of
up to 1200 baud on 2-wire dial-up circuits, and
up to 1800 baud on conditioned leased lines. Op-
eration is half-duplex and the modem modulation
scheme used is Frequency Shift Keying (FSK).

A Mark is represented by a frequency of 1200 Hz,
while a Space is represented by a frequency of 2200
Hz.

This modem specification also describes an op-
tional ’Reverse’ channel, for slow, general purpose
use. While the specification calls for this ’Reverse’
channel to operate at 5 BPS, many modem manu-
facturers implement 75 to 150 baud versions.

Phase Shift Keying (PSK)

201 Modem These Bell System modems support
synchronous data rates up to 2400 BPS. Full-duplex
is available, but the modem operates in a Half-
Duplex mode when using a 2-Wire switched voice
circuit. This modem uses a modulation scheme
that encodes data by using four specific ’phase
shifts’ of the transmitted carrier. This type of mod-
ulation is known as DPSK (Differential Phase Shift
Keying), but is sometimes called QPSK (Quad
Phase Shift Keying).

In this modulation scheme, two bits (called a
’dibit’) are represented with a single phase change:

00 = 45 degrees 10 = 135 degrees 11 = 225 de-
grees 01 = 315 degrees

The actual modem modulation rate is 1200
BAUDS, with each BAUD capable of supporting
two data bits.

The CCITT (now ’ITU-T’) has specified a com-
patible modulation scheme in Recommendation
V.26, Alternative ’B’.

V.26 Modem CCITT Recommendation V.26,
Alternative ’A’ describes a modulation type that
is similar to the Bell 201 series of modems, except
that different phase shift values are specified to en-
code the ’dibit’:

00 = 0 degrees 10 = 90 degrees 11 = 180 degrees
01 = 270 degrees

The actual modem modulation rate is 1200 baud,
with each baud capable of supporting two data bits.

In the second release of the V.26 Recommenda-
tion (called ’V.26bis’), fallback operation to 1200
BPS is defined. V.26bis also recommends that the
modulation type used be ’Alternative B’, as de-
scribed above (Bell 212). The third iteration of
this Recommendation (called ’V.26ter’) incorpo-
rates echo cancellation techniques within the mo-
dem to delineate the Originating and Answering
modem signals. V.26ter allows full-duplex opera-
tion on a 2-Wire, switched, voice circuit.

Bell 212 Modem This Bell System modem sup-
ports either asynchronous or synchronous data
rates up to 1200 BPS on switched 2-wire dial-up
circuits. Operation is full-duplex with different car-
rier frequencies used between the Originating and
Answering modems. The modulation method em-
ployed is DPSK, using ’dibits’ to represent up to
four phase changes.

The actual modem modulation rate is 600 baud,
with each baud consisting of two data bits.

The 212 modem series also incorporates a 300
baud, Type 103, modem for compatibility with pre-
existing Bell 103 modems.

This modem type was widely used in the early
to mid 1980s, and is still commonly found in use
today.

V.22 Modem This modulation is described in
CCITT Recommendation V.22 and FED-STD-
1008! It utilizes Differential Phase Shift Keying
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Figure 164: V22 modem signal space

(DPSK) and is designed for synchronous or asyn-
chronous operation at 1200 BPS. Operation is full-
duplex with different carrier frequencies used be-
tween the Originating and Answering modems.

The modem modulation rate is 600 bauds, with
each baud representing two data bits.

This modem modulation scheme supports a ’fall-
back’ rate of 600 BPS.

00 = 90 degrees 10 = 0 degrees 11 = 270 degrees
01 = 180 degrees

V.22bis Modem The ’bis’ qualifier is a French
(also, Latin) term for ’duo’ or ’twice’. Thus, as
the name would suggest, this modulation scheme
is described in the second release of CCITT’s V.22
Recommendation.

This modulation scheme supports transmission
of full-duplex 2400 BPS synchronous or asyn-
chronous data over a switched, 2-Wire, voice cir-
cuit. Alternatively, these modems may be em-
ployed on leased-lines as well. The modulation
scheme used is QAM (Quadrature Amplitude Mod-
ulation). In this modulation scheme, the data
stream is divided up into groups of four bits, known
as ’quadbits’. The first two bits of each ’quadbit’
are encoded as a phase change, changing the ’quad-
rant’ (except in cases where the first two bits are
’01’; in this case, the ’quadrant’ is not changed from
its previous state). The second two bits of each
’quadbit’ define one of four signal states in the new
’quadrant’.

The modulation rate is 600 bauds, with each
baud representing four data bits.

These modems support fallbacks to V.22 modu-
lation schemes also. Most of the popular V.22bis
PC modems support fallback operation to Bell 212
modulation also, depending upon the capabilities
of both Originating and Answering modems.

Although the V.22bis specification was defined
in 1984, practical deployment of these modems did
not occur until the late 1980s.

V.27 Modem CCITT Recommendation V.27
describes a modulation scheme that is capable
of supporting 4800 BPS, full-duplex, synchronous
data. Operation may be full-duplex on a 4-Wire
leased line or half-duplex on a 2-Wire, switched,
voice circuit. The modulation scheme is known as
D8PSK (Differential 8 Phase Shift Keying) and op-
erates by breaking the incoming data stream into
groups of three bits (’tribit’). These ’tribits’ are
represented by one of eight possible phase shifts:

001 = 0 degrees 000 = 45 degrees 010 = 90 de-
grees 011 = 135 degrees 111 = 180 degrees 110 =
225 degrees 100 = 270 degrees 101 = 315 degrees

The modulation rate is 1600 bauds, with each
baud representing three data bits.

The second and third releases of the V.27 Rec-
ommendation (V.27bis and V.27ter, respectively)
added the ability to fallback to a 2400 BPS rate
using V.26, Alternative ’A’ modulation. Also, the
start-up/training times are reduced in the V.27bis
Recommendation.

V.29 Modem This modulation scheme was
first standardised by the CCITT in 1976. It
uses a form of Quadrature Amplitude Modulation
(QAM), which transports data in groups of four
bits (’quadbits’). The first bit determines the am-
plitude of the signal while the next three bits rep-
resent one of eight phase changes. The phase shifts
are similar to the ’tribit’ modulation scheme de-
scribed in Recommendation V.27:

001 = 0 degrees 000 = 45 degrees 010 = 90 de-
grees 011 = 135 degrees 111 = 180 degrees 110 =
225 degrees 100 = 270 degrees 101 = 315 degrees

V.29 modulation is capable of transporting syn-
chronous data at rates up to 9600 BPS. It operates
full-duplex on a 4-Wire leased line or half-duplex
on a 2-Wire, switched, voice line.

The V.29 modulation rate is 2400 bauds, with
each baud representing four data bits.
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Figure 165: V29 modem signal space

V.29 modulation also incorporates fallback to
7200 BPS. In this mode, three bits (’tribit’) are
combined to represent one of eight possible phase
changes. In this mode of operation, the modem’s
modulation rate is still 2400 baud, but each baud
now represents three data bits.

V.29 modulation also incorporates fallback to
4800 BPS. In this mode, two bits (’dibit’) are com-
bined to represent up to four phase changes (0, 90,
180, and 270 degrees). The modem’s modulation
rate remains at 2400 baud, but each baud now rep-
resents only two data bits:

00 = 0 degrees 10 = 90 degrees 11 = 180 degrees
01 = 270 degrees

V.29 modems were highly popular in the 1970s
and 1980s for use on 4-Wire leased lines and are
still found in use today. The Group 3 FAX ma-
chines that are popular today operate in a half-
duplex fashion using V.29 modulation.

V.32 Modem First defined in 1984 by the
CCITT, V.32 defines a modem that can support
9600 BPS asynchronous or synchronous data. Op-
eration is full-duplex over a 2-Wire, switched, voice
circuit. The modulation used may be Quadrature
Amplitude Modulation (QAM), or QAM with Trel-
lis coding. Trellis coding is actually a Forward Er-
ror Correcting (FEC) scheme.

The modulation rate is 2400 baud, in both
’Nonredundant’ and ’Trellis’ modes of operation.
In the ’Nonredundant’ mode, each baud represents
four bits. In the ’Trellis’ mode, each baud repre-
sents five bits; the four data bits, plus a coded, re-
dundant bit that is the result of convolutional cod-

Figure 166: V32 modem signal space

Figure 167: V33 modem signal space

ing of the first two bits in the previous ’quadbit’
modulation process.

The use of echo cancellation techniques allows
the same carrier frequency (1800 Hz) to be used at
each end of a modem system.

Delays in the development of cost-effective echo
cancellation techniques resulted in practical deploy-
ment of V.32 modems in the early 1990s.

V.32bis Modem This standard modulation
scheme was developed by the CCITT at the end
of the 1980s (1988), although practical deployment
of such systems did not occur until the early 1990s.
This modulation method allows the transport of
asynchronous or synchronous data at line rates
up to 14400 BPS (14.4 KBPS). Operation is full-
duplex over 2-Wire, switched, voice circuits, us-
ing echo cancellation techniques to differentiate be-
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tween the Originating and Answering modem’s sig-
nals.

The modulation rate is 2400 bauds, and use
the Forward Error Correcting (FEC) capabilities of
Trellis coding. Quadrature Amplitude Modulation
(QAM) is employed, using groupings of seven bits.
Only six of these bits contain actual user data, the
remaining bit is the convolutional coded, redundant
bit generated from the previous bits.

V.FC Modem V.FC (or ’V.Fast Class’) is a
non-standard 28.8 KBPS modulation scheme de-
veloped by, and proprietary to, Rockwell. It was
first released in 1993 and has enjoyed some success.
As a mature product, most of the ’bugs’ have been
worked out, thus improving reliability. However,
the majority of the industry has been awaiting the
recent release of the new CCITT V.34 Recommen-
dation.

It is capable of supporting full-duplex syn-
chronous or asynchronous data and supports either
4-Wire leased lines or 2-Wire switched voice cir-
cuits.

V.34 Modem Approved in the summer of
1994 was the new 28.8 KBPS modulation scheme
described in CCITT (ITU-T) Recommendation
V.34. During the development of this modulation
method, this scheme was known as ’V.FAST’.

It is capable of supporting full-duplex syn-
chronous or asynchronous data over 4-Wire leased
lines or 2-Wire circuits.

The modulation rate (baud or ’symbol’ rate)
can vary. The carrier frequency can vary. The
V.34 Recommendation also describes a ’line prob-
ing’ process that allows the modem to automati-
cally setup optimally for any type of line connec-
tion. The training time has been reduced, but the
modem will recover automatically from most line
disturbances.

Multi-dimensional Trellis coding is employed for
robust Forward Error Correcting. A ’Reverse
Channel’ option is also described in V.34!
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Figure 168: QPSK in a band-limited channel

Advanced Modulation Formats
And Applications

In the tutorials on Digital Baseband Transmis-
sion (Section ) and Digital Passband Transmis-
sion (Section ) we have analysed the basic tech-
niques for digital signal transmission. We have
looked at their bit rate to bandwidth efficiency,
the effects of noise and inter-symbol interference
in the ideal case. Many modern applications re-
quire larger bit rates much closer to the theoreti-
cal maximum, and in this case we do have to be
concerned by the non-ideal characteristics such as
non-linear effects and multiple-path reception. To
reduce these problems more advanced modulation
schemes, based on those considered are often used.
The detailed analysis of these schemes is consid-
ered beyond the scope of this tutorial, and we will
be taking a descriptive approach using application
examples.

Continuous Phase Modulation

Previously when looking at Coherent M-ary Phase
Shift Keying (MPSK) (Section ) we considered it
as two indepandlty tnasmitting binary PSK chan-
nels each of which is modulated with ideal bipo-
lar non-return-to-zero symbols. In such the phase
transition between symbols is instantaneous, and
the amplitude, and thus power transmitted is a con-
stant. Real channels are however bandlimited with
the result shown in figure 168).

The change in amplitude from +ve to -ve now
not instantaneous but will take some time due to
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Figure 169: OQPSK in a band-limited channel

the filtering of the channel. The result is that dur-
ing the transition the amplitude of the channel will
decrease to zero. If both channels change phase
(sign) at the same time (an overall phase change
of π)the total power will, for a moment, go to 0.
If only one channel changes then the power will be
momentarily halved (the signal amplitude reduced
by 1/

√
2). If the system is nonlinear i.e. has a re-

sponse depending on power then this fluctuation in
power will lead to spectral spreading and signal will
occupy a larger bandwidth than would be needed
in the ideal linear case.

Offset Quadrature Phase Shift Keying
(OQPSK)

As mentioned previously the power in a bandlim-
ited QPSK falls to zero if the two channels change
phase simultaneously but only falls to a half if
only one channel changes. Preventing both chan-
nels changing simultaneously would therefore re-
duce the power fluctuations and the consequent im-
pairments. Offset Quadrature Phase Shift Keying
(OQPSK) acheives this by simply delaying one of
the channels by half a symbol time (the bit time).
Thus the maximum phase change at any one time
in the signal is π/2 and we have the result is in
figure 169).

Clearly we have reduced the amplitude of the
power fluctuations in the signal and we will this
reduce the power spreading in a nonlinear system.
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Figure 171: MSK Waveforms

Minimum Shift Keying

We see that although QPSK reduces the power fluc-
tuations it doesn’t eliminate them. With minimum
shift keying we can acheive this by effectively al-
lowing the phase to change slowely over the entire
symbol time. We acheive this by applying sinu-
soidal pulse shaping to the I and Q channels prior
to multiplication by the carrier i.e. we transmit
sinusoidal pulses. The transmitted signal is then
given by

f(t) =an sin

(
2πt

4Tb

)

cos 2πfct

+ bn cos

(
2πt

4Tb

)

sin 2πfct

and the transmitter would be as shown in fig-
ure 170).

We note that the power of this signal will be
constant and the phase changes continuously and
linearly over the symbol time. A linear change in
phase over time is course just a frequency shift, and
this is modulation technique is exactly equivalent to
differential binary Coherent Binary Frequency Shift
Keying (FSK) (Section ) but with the frequencies
seperated by a half cycle in the symbol period -
half as much as what we had when we looked at it
previously. This is illustrated in figure 171).

If we look at the power spectrum for this signal
(figure 172)) we find that it falls off at -12 dB per
octave compared to -6 dB per octave for QPSK or
OQPSK.

101



Series to
parallel

converter

×

×Tb

Tb

Baseband
Binary In

Rb = 1/Tb (bit/s)

an = ±1

Rb,I = 1
2Tb

bn = ±1

Rb,Q = 1
2Tb

sin
(

2πt
4Tb

)

Advance

×

×

π/2

+

cos 2πfct

Delay

Cosinusoid
Pulse Shaping

Sinusoid
Pulse Shaping

MSK

(Continuous

Phase FSK)

Figure 170: An MSK Transmitter
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Figure 172: Power Spectrum Comparison between OQPSK and MSK
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Gaussian Minimum Shift Keying

We can take this whole idea of slowely changing the
phase further by using other functions to spread out
the change in phase. A good function to use is the
Gaussian hence we have Gaussian Minimum Shift
Keying (GMSK). Now the width of the Gaussian
spreading function can be varied and the change in
phase can be spread over a time period wider than
the symbol period. This is not the case with sinu-
soidal MSK. We now also acheive not only continu-
ous phase but a continuous derivative in the phase
change i.e. the frequency sweeps slowy between
extremes rather than switching suddenly. See fig-
ure 173).

The result is a further decrease in the sidelobes
in the power spectrum as shown in figure 174). In-
deed we can optimise the Gaussian spreading width
for different applications. In radio frequency appli-
cations this reduction in the sidelobes of the power
spectrum will reduce co-channel interference. This
is of particular importance in cellular mobile sys-
tems and it is for this reason than GMSK is used
in the GSM digital cellular radio systems.

Convolutional Coding

Figure 175) shows a non-recursive finite state ma-
chine representation for a convolutional code used
to introduce a dependency between successive sig-
nal points such that only certain patterns or se-
quences of signal points are permitted. The code is

Path 1

Path 2

Flip-flop
Input Output

Figure 176: A constraint length 3 rate 1/2 convo-
lutional code

1 2 3

+ +

1 2

Output

k=1

bits

M=3

Figure 177: Alternative state machine representa-
tion of the coder in 176)

made up of Mk stages of shift registers. At every
clock tick k information bits are shifted into the
registers. The n output bits from the code are each
determined by a linear summation of the register
bits. The logic determining which bits of the regis-
ter are added for which output bits determines the
specific code. Such a code depends on (M − 1)k
previous information bits (this is called the con-
straint length). The code rate is the ratio of input
to output bits k/n.

Figures 176) and 178) show specific examples of
two convolutional codes.

In order to determine the output we need simply
trace the transition in stored state for each input bit
and determine the outputs using binary addition.
If we take the finite state machine illustrated in
figure 176) as an example for an input sequence
of 101100 we get the following transitions (note
we normally assume an initial starting state of all
zeros).

103



MSK

0.2

0.25

0.3

WTB

0 0.5 1 1.5 2 2.5

−120

−100

−80

−60

−40

−20

0

f/R

P
ow

er
S
p
ec

tr
a
l
D

en
si

ty
(d

b
)

Figure 174: Power Spectrum Comparison between GMSK and MSK
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Figure 175: Finite state machine representation of a generic convolutional code
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Figure 178: A constraint length 2 rate 2/3 convo-
lutional code
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Output
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Figure 179: Alternative state machine representa-
tion of the coder in 178)

Table 8: Encoding the binary sequence 101100 us-
ing the convolutional code of figure 176)

in-
put

initial
state

out-
put

new
state

1 00 11 10
0 10 10 01
1 01 00 10
1 10 01 11
0 11 01 01
0 01 11 00

Table 9: Encoding the binary sequence 101100 us-
ing the convolutional code of figure 178)

in-
put

initial
state

out-
put

new
state

10 00 110 10
11 10 000 11
00 11 011 00

0 1 2 3 4 5 6

+ +

1 2

Output

k=1

bits

M=7

Figure 180: NASA rate 1/2 constraint length 7 con-
volutional code

With the resulting output of 111000010111. No-
tice we input 1 bit at a time and output 2 bits
making it this a rate 1/2 convolutional code and
that the output depends on 3 inputs giving it a
constraint length of 3.

And if we take the same input sequence for the
finite state machine illustrated in figure 178) as an
example for an input sequence of 101100 we get
the following

Giving an output of 111000010111. Note that
this convolutional encoder inputs 2 bits and out-
puts 3 bits at a time making it rate 2/3, and that
the output depends on the current and one previ-
ous input sequence in the state machine giving it a
constraint length of 2.

An example of a convolutional code in use is
the rate 1/2 constraint length 7 convolutional code
shown in figure 180). This code was implemented
in hardware in several space missions including the
Voyager missions. More recent missions have used
a constraint length 15 code implemented partly in
software.

All of the convolutional codes illustrated so far
have as their input the unencoded sequence - they
are non-recursive. An alternative is to feedback

105



+ 1 2 3+

+

+

+ out1

out2

in

Figure 181: A rate 1/2 recursive convolutional code
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Figure 182: Finite State Machine for a constraint
length 3, rate 1/2 convolutional code

some of the registers cells into the input in what is
called a recursive code as shown in figure 181). This
figure also shows a systematic code - one in which
the encoded sequence is part of the output code.
In practice most systematic codes are recursive and
most non-systematic codes are non-recursive.

Assessment
Encoding binary sequences using finite
state machines.

Deadline: 2009-12-12 23:59:00
No Questions: 2
Time Allowed: 10 min

State Diagram

Convolutional codes consist of a finite state ma-
chine and may therefore be represented using a
state diagram. Figure 183) shows a state diagram
corresponding to the convolutional coder state ma-
chine in figure 182). Using the terminology from
section Convolutional Coding (Section ) the code

00

0/00 10
1/11

01

0/10

111/01

0/11

1/00

0/01

1/10

Figure 183: State diagram for the code in fig-
ure 182).

1 2 3 4

+ + +

1 2 3

Output

k=2

bits

M=2

Figure 184: Finite State Machine for a constraint
length 2, rate 2/3 convolutional code

has a state represented by (M − 1)k bits of previ-
ous state information and has k bits governing the
transition to a new state and the combination of
the two determines the output. Thus in the state
diagram (figure 182)) we have four states given by
two stored bits represented by the circles and from
each state we have two transitions corresponding
to the 0 or 1 of the input bit which determines the
two output bits and the new state. In this diagram
the 0 bit transitions are represented using dashed
lines and the 1 transitions using solid lines, with
each transition labelled with the input bit followed
by the output bits. The state diagram provides a
complete static view of a convolutional code.

Similarly figure 185) shows a state diagram corre-
sponding to the convolutional coder state machine
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Figure 185: State diagram for the code in figure 184).

in figure 184). In this example, because there are
two input bits at a time there are four possible tran-
sitions from each state each of which produces 3 bits
of output. These are coded using colors and dashed
lines. Clearly the constraint length 7 NASA code
would have a state diagram with 26 = 64 states
and would be too big to show in its entirety here
and the constraint length 15 code is 256 times more
complex again. The complexity of a convolutional
code grows exponentially with its constraint length.
While there are easy to implement in terms of en-
coding as we shall see this complexity places limi-
tations on practical constraint lengths that can be
optimally decoded.

Assessment
Encoding binary sequences using state di-
agrams.

Deadline: 2009-12-12 23:59:00
No Questions: 2
Time Allowed: 10 min

Trellis

The state diagram for convolutional codes discussed
in section State Diagram (Section ) is a static pic-
ture. For the purposes of decoding convolutional
codes a more dynamic view is required. This is
done by unravelling the state diagram and along

a time axis to form a trellis diagram. For our ex-
emplar constraint length 3, rate 1/2 code shown
in figure 183 the corresponding trellis is shown in
figure 186). The set of four states are represented
by vertical positions on the graph and along the
horizontal axis we have “levels” corresponding to
incoming bits. The transitions from each state at
one point in time are joined to the appropriate tran-
sitions at the subsequence level. Dashed (red) tran-
sitions correspond to an incoming 0 and solid blue
transitions to a 1.

Clearly encoding of an incoming sequence sim-
ply corresponds to tracing a path, starting from
the initial state (all zeros usually) and following
the transitions corresponding to the incoming bits.
Figure 186) shows the path traced when encoding
the bit sequence 1001101. From this we see the
encoded output 11101111010100 and that the final
state reached is 01.

The real advantage of the trellis diagram is how-
ever that we can use it for decoding as demon-
strated in section viterbi-algorithm.

The Viterbi Algorithm

Viterbi decoding is a maximum likelihood decoding
algorithm for convolutional codes. It uses the code
trellis. The difficulty in decoding trellis codes is
that the number of possible routes grows exponen-
tially. The Viterbi algorithm reduces the number
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Figure 186: Trellis for constraint length 3, rate 1/2 convolutional code.
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Figure 187: Data encoding of sequence 1001101 using the trellis
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Figure 191: Viterbi decoding - merging paths

of nodes that have to retained to a maximums size
of 2S where $S$ is the number of encoder states by
merging nodes. It is best explained by illustration.

Figure 188) shows the trellis for our usual con-
strain length 3 rate 1/2 code. The input in this
case is an encoded sequence which has one error
(marked in bold) and we are start with an initial
state of 00.

The first part of decoding is to trace the possible
paths through the trellis and keeping track of the
accumulated likelihood of each path. In this case
we are going to use the Hamming distance however
soft decision decoding using accumulated probabil-
ities may also be used. Starting from the initial
state there are two possible transitions, 00 or 11

leading to the states 00 and 10. With the incoming
sequence of 11 the hamming distances correspond-
ing to the two transitions are 2 and 0 respectively.

We can the continue keeping track of the possible
routes with the next input sequence of 10 where
we now have four possible paths leading to the
four states accumulated Hamming distance rang-
ing from 0 to 3.

With the next two bits of input we find that we
may have several paths leading to the same state.
Figure 191) shows one example. The Viterbi al-
gorithm is that we retain the maximum likelihood
path i.e. that with the least number or probability
of errors. In the example we have two transitions
to state 0 - one which would have 4 errors and one
which would have 1 error. We retain the one with
one error. We do this at all points.

Figure 192) shows the full set of routes through
the trellis. The most probable one has a Hamming
distance of 1 (since there was one error in out en-
coded sequence) and is marked in Green. We can
therefore trace its path and determine at each stage
what the decoded sequence would be from the tran-
sitions. That is Viterbi decoding. In our simple ex-
ample we only need to keep track of the four paths
to the four states. It can also be shown that you do
not to wait for the entire transmitted sequence to
decode the sequence - there is a truncation length.
With the example above we see that once we by
the time we reached the end the all the surviving
routes had converged for the first two transitions.
However it is still the case that the complexity of
Viterbi decoding is prohibitive for long constraint
lengths - the constraint length 15 code now used
by NASA requires specialised hardware called the
BVD (Big Viterbi Decoder).

Print off the following Trellis diagrams to use for
completing the assessment.

Assessment
Decoding convolutional encoded se-
quences using the Viterbi algorithm. You
may wish to print copies of the trellis
before starting this questionnaire.

Deadline: 2009-12-12 23:59:00
No Questions: 3
Time Allowed: 100 min

Trellis Coded Modulation

So far we have considered the channel coding pro-
cess as being performed separately from the modu-
lation, and likewise for detection and decoding with
error control being provided by additional redun-
dant bits in the code thus lowering the information
bit rate per channel bandwidth. By treating coding
and modulation as a single process we can achieve
a more effective utilisation of available bandwidth
and power. The coding then involves imposing cer-
tain patterns on the transmitted signal. One way
of combing modulation and error control is called
Trellis-coded modulation (TCM) which has three
features

1. The number of signal points in the con-
stellation used is large than what is re-
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Figure 188: Trellis for Viterbi Decoding an encoded sequence with one error.
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Figure 189: First stage of decoding the sequence
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Figure 190: Several stages of Viterbi decoding.
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Figure 192: The fully Viterbi decoding.
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Figure 193: Trellis for decoding a constraint length 3 rate 1/2 convolutional code
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Figure 194: Trellis for decoding a constraint length 3 rate 1/3 convolutional code

quired for the modulation format of inter-
est with the same data rate; the additional
points allow redundancy for forward error-
control coding without sacrificing band-
width.

2. Convolutional coding is used to introduce
a dependency between successive signal
points such that only certain patterns or
sequences of signal points are permitted.

3. Soft-decision decoding is performed in the
receiver in which the permitted sequence
of signals is modelled as a trellis structure.

By increasing the size of the constellation the prob-
ability of symbol error increases for a fixed signal-
to-noise ratio and so with hard decision decoding
we would gain nothing. Soft-decision decoding on
the combined code and modulation ameliorates this
problem. In soft decision decoding we maximise the
Euclidean signal distance between code vectors as
compared to maximising the hamming vectors be-
tween code words.

The design of this type of code involves partition-
ing an M -ary constellation successively into 2,4,8
subsets with size M/2,M/4,M/8 having progres-
sively larger increasing Euclidean distance between
their respective signal points. Shown here is the
partitioning of an 8-PSK constellation into suc-
cessive subsets having increase within subset Eu-
clidean distances d0 < d1 < d2. Similar partition-
ing can be done for QAM constellations.

T T + 8-PSK
Encoder

16-QAM

a1

c1

c2

c3a2

a3
c4

Output

Figure 195: An Ungerboeck encoder

d0

d1
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0 1
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00 10 01 11

Figure 196: Partitioning of an 8-PSK constellation
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Based on the subsets from the partitioning of the
two-dimensional constellation we can devise simple
efficient coding schemes. To send n bits/symbol
with quadrature modulation we start with a two-
dimensional constellation of 2n+1 signal points in
the appropriate format. These are partitioned into
4 or 8 subsets and 1 or 2 incoming bits per symbol
enter a rate-1/2 or rate-2/3 binary convolutional
encoder respectively. The resulting 2 or 3 coded
bits per symbol determine which subset is selected
and the remaining uncoded data bits determine
which particular point from the selected subset is
to be signalled. This kind of Trellis code is called
a Ungerboeck code. The Viterbi algorithm can be
used to perform maximum likelihood sequence de-
tection at the receiver with each branch in the trel-
lis corresponding to a subset rather than a single
signal point. The first step is to determine the sig-
nal point within each subset nearest to the received
signal point. This signal point and its metric (dis-
tance from the received signal) are used thereafter
for the branch in question and the Viterbi algo-
rithm may proceed as normal.

Trellis coded modulation is used in the current
generation of Vfast (V34) modems.

Assessment
Deadline: 2009-12-12 23:59:00
No Questions: 1
Time Allowed: 3 min

Turbo Coding

Turbo codes, first presented at the International
Conference on Communications in 1993, have be-
come very important in recent times in that they
have demonstrated that 9it is possible to achieve
transmission to withing 0.5 dB of the Shannon
Limit for transmission in a practical way. They in-
volve a combination of parallel concatenated codes
and iterative decoding.

Classic Serial Concatenated Codes Fig-
ure 197) shows the classical idea of serial concate-
nated codes which typically uses a soft-decision
trellis code and Viterbi decoder as the inner code
which produces a hard decision output and a al-
gebraic type hard-decision code (such as Reed-
Solomon Code) as the outer coder to “clean up”
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Figure 198: Parallel Concatenated Encoders
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ûr

Figure 199: Iterative Decoding

residual errors of the first decoder. An exam-
ple use of this is a Consultative Committee for
Space Data Systems (CCSDS) standard which used
a maximum-free-distance (MFD) (2,1,6) convolu-
tional code as the inner code and various Reed-
Solomon codes as outer codes.

Turbo Coding Turbo-Codes typically use par-
allel encoders and a iterative decoder as shown in
figures 198) and 199).

The encoder illustrated uses two parallel system-
atic convolutional encoders. The fed into one of
the encoders is interleaved compared with the in-
put to the other. The outputs of the two encoders
are transmitted in parallel with the systematic bits.
The encoded output may be punctured (that is
some of the bits may be removed - this technique
is often used to increase the rate of trellis codes
with little reduction in error correcting ability if
the puncturing code is appropriately chosen).

The decoder makes use of two parallel “a posteri-
ori probability”(APP) decoders. APP decoders use
algorithms to compute the probabilities of trans-
mission of either the information bits or encoded
symbols P [xr|~y] where ~y is the received sequence
at the output of the channel whose input is the
transmitted sequence ~x. Normally APP performs
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Figure 197: Classic Serial Concatenated Codes

only slightly better than the Viterbi algorithm for
decoding however for Turbo decoding APP is used
for soft-in soft-out (SISO) algorithms (i.e. both the
inputs and outputs have probability information re-
lation to the symbols of a Trellis code rather than
hard decisions). The two SISO decoders are used
to iteratively decode the data - that is the output
of one is fed into the other which is then fed back
into the first one (with appropriate interleaving and
deinterleaving). After a small number of iterations
the output is taken.

It is found that with this type of iterative decod-
ing the error performance can converges quickly to
close to the Shannon limit. To achieve a similar per-
formance with Viterbi decoding would require very
large convolutional codes and the consequent de-
coding complexity. The Trellis codes used in Turbo-
coding are much shorter and therefore the complex-
ity is much reduced. Note however that iterative
decoding does add additional latency which may
make it unsuitable in certain applications. Turbo-
coding is used in Deep-space communication links
and in recent DVB and 3G Wireless Standards.

See [TTC2004] for in depth analysis of Trellis and
Turbo codes..

Efficiency and Complexity of Convolutional
and Turbo Decoding

Figure 200) shows a comparison of various mod-
ulation schemes and the Shannon limit. For and
efficiency of 2 bits/Hz Shannon’s theory allows zero
error if SNR > 1.5 (1.76dB). QPSK error rate im-
proves only very gradually with SNR, Trellis coded
modulation (TCM) provides significant further im-
provements but only at the cost of very large decod-

[turbo-coding::ttc2004]“Trellis and Turbo Coding”,
Christian B. Schlegel and Lance C. PÃl’rez, IEE
Press 2004. ISBN 0-471-22755-2.

Table 10: Coding Gains for Trellis-coded 16-PSK
modulation

Num-
ber
of
States

k1 Code
Rate

k1

k1+1

m = 3
coding
gain
(dB) of
16-PSK
versus
uncoded
8-PSK

m → ∞ Nfed

4 1 1/2 3.54 4
8 1 1/2 4.01 4
16 1 1/2 4.44 8
32 1 1/2 5.13 8
64 1 1/2 5.33 2
128 1 1/2 5.33 2
256 2 2/3 5.51 8

ing complexity. The Turbo-coded regime however
achieves further improvements using only two small
concatenated trellis codes.

Digital Subscriber Lines (xDSL)

Many of us are familiar with using standard voice-
band telecom modems (e.g. 56K, 38.8K etc) to
connect to the internet. With these modems we
connect end to end over the standard voice tele-
phony system to a receiver system - usually a mo-
dem run by your service provider of choice. The
transmission rate is limited to about 48Kbps by

[convolutional-coding-efficiency::ungerboeck87]
“Channel coding with multilevel/phase signals”, G.
Ungerboeck, IEEE Transactions on Information
THeory, IT-28, pp. 55-67, 1982
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Figure 200: Bit error probability of quadrature phase-shift keying (QPSK) and selected 8-PSK trellis
coded modulation (TCM) and trellis-turbo-coded modulation (TTCM) systems as a function of the
normalised signal-to-noise ratio.
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Table 11: Coding Gains for Trellis-coded QAM
modulation

Num-
ber
of
States

k1 Code
Rate

k1

k1+1

m =
3
cod-
ing
gain
(dB)
of
16-
QAM
ver-
sus
un-
coded
8-
QAM

m =
4
cod-
ing
gain
(dB)
of
32-
QAM
ver-
sus
un-
coded
16-
QAM

m =
5
cod-
ing
gain
(dB)
of
64-
QAM
ver-
sus
un-
coded
32-
QAM

m = ∞
asymp-
totic
coding
gain
(dB)

Nfed

4 1 1/2 3.01 3.01 2.80 3.01 4
8 2 2/3 3.98 3.98 3.77 3.98 16
16 2 2/3 4.77 4.77 4.56 4.77 56
32 2 2/3 4.77 4.77 4.56 4.77 16
64 2 2/3 5.44 5.44 4.23 5.44 56
128 2 2/3 6.02 6.02 5.81 6.02 344
256 2 2/3 6.02 6.02 5.81 6.02 44
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Figure 201: Comparison between Voiceband and
xDSL modems
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Figure 202: Spectrum utilisation for ADSL

the 4kHz bandwidth available over a standard voice
band connection.

Clearly there is a need to support higher data
rates to the home . xDSL are a family of technolo-
gies for sending data over the coppr wire. With
Digital Subscriber Line (DSL) modems the signal
does not pass into the telephone switching system.
You are communicating over the copper wire in you
local loop (the so called “last mile”) to a modem at
your local exchange (the DSLAM) which is con-
nected to the data network. Consequently DSL
modems are not limited to use just voiceband but
can use much higher frequencies. The typical spec-
trum use is as shown in figure 202).

The range of DSL technologies which are sum-
marised inthe table below. This is not an ex-
haustive table but shows those technologies which
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Figure 203: Near end and far end crosstalk (NEXT
and FEXT)

seem to be gaining ground. Assymetric DSL
(ADSL) is the main technology being used to roll-
out broadband for home use. ITU-T Recommen-
dation G.995.1 provides a comprehensive overview
of these standardized recommendations.

Impairments in xDSL Systems

Typically a DSL modem will use high frequencies
and as consequence the voiceband frequencies an
be used for telephony as normal. Splitters are used
at either end to seperate the voice from the data
signals. The DSL signals uses freuncies typically at
several hundered kHz. Sending such signals over
the twisted pair copper wires and sharing them
with voice signals is of course not without its prob-
lems. THe properites of the copper wires are quite
variable in that the loop lengths vary, they are typ-
ically carried in differential mode, may be trans-
former coupled (no DC path) and may have bridge
taps and loading coils (a variable impedance). One
of the most significant issues is the crosstalk be-
tween twisted pairs (FEXT and NEXT).

NEXT is near end crosstalk, that is crosstalk
with signals from the same end while FEXT is
crosstalk from signals comming from the far end.
In general, NEXT is much larger than FEXT be-
cause the interference source is closer to the re-
ceiver. With DSL NEXT is the more severe, and
increases with frequencies and must be avoided.
NEXT can in principle be eliminated by not trans-
mitting in both directions in the same time, sepa-
rating the two directions of transmission into either
nonoverlapping intervals in time or nonoverlapping
frequency bands. This is how xDSL systems at-
tempt to avoid self-NEXT by using frequency or
time-division duplexing. Finally Radio-frequency

Table 12: A summary of different DSL technologies

Technol-
ogy

Speed Distance
Limita-
tion

Applica-
tion

56 Kbps 56 Kbps
down-
stream,
33.6 Kbps
upstream

None Email,
remote
LAN ac-
cess, Inter-
net/intranet
access

ISDN Up to 128
kbps Full
duplex

18,000 feet
(additional
equipment
can ex-
tend the
distance)

Video Con-
ferencing,
disaster
recovery,
leased line
backup,
transaction
process-
ing, call
centre ser-
vices, inter-
net/intranet
access

Cable Mo-
dem

10-30 Mbps
down-
stream,
128 Kbps-
10 Mbps
upstream
(shared)

30 miles
over coaxial
(additional
equipment
can extend
the dis-
tance to
200 miles)

Internet Ac-
cess

ADSL Lite Up to
1 Mbps
down-
streamn
Up to
512 Kbps
upstream

18,000 feet Internet/intranet
access, IP
telephony,
video tele-
phony

ADSL/R-
ADSL

1.5-8 Mbps
dowstream,
up to
1.544 Mbps
upstream

18,000 feet
(12,000 feet
for fastest
speeds)

Internet/intranet
access, video
on demand,
remote
LAN access,
VPNs, VoIP

HDSL 1.544 Mbps
full duplex
(T1) 2.048
Mbps full
Duplex
(E1) (uses
2-3 wire
pairs)

12,000-
15,000
feet

Local, re-
peatered
T1/E1
trunk re-
placement,
PBX inter-
connection,
Frame Re-
lay Traffic
aggrega-
tor, LAN
interconnect

SDSL 1.544 Mbps
full duplex
(T1) 2.048

10,000 feet Local, re-
peatered
T1/E1
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interference (ingress and egress) are significant is-
sues. In particular the spectrum used by DSL is
also shared by several amateur and industrial ra-
dio frequency bands. xDSL modems must therefore
use advanced modulation tecnhnques to overcome
these problems.

Unavoidable Impairments

• Alien Crosstalk

• kindred FEXT

• AWGN

Avoidable Impairments

• Kindred NEXT

• RFI (AM radio and amateur radio)

• POTS signalling

• Linear distortion

• Non-linear distortion

• Down/up interference leak through FDD fil-
ters and/or echo canceller

• Clipping

• Quantising noise in DAC and ADC

• DSP round-off noise

• Noise and/or distortion introduced by clock
jitter

ADSL modulation formats

As mentioned in Digital Subscriber Lines
(xDSL) (Section ) advanced modulation formats
are needed to enable high data rate transmission
over the copper local loop. Two technologies
used in ADSL are CAP and DMT. Both these
technologies require digital signal processing.

F
re

qu
en

cy

Time

Figure 204: CAP use time division multiplexing

F
re

qu
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Time

Figure 205: DMT use frequency division multiplex-
ing

Carrierless AM/PM (CAP) Modulation
This was the first modulation technology used to
deliver ADSL. It is essentially suppressed carrier
QAM. The othogonal signal modulation is executed
digitally. Essentially the two channels are shaped
using seperate digital transversal bandpass filters
with equal amplitude characteristics and a pi/2 dif-
ference in phase (a Hilbert pair). The signals are
then combined, fed to a digital to analogue con-
verter (DAC) and then transmitted. The spectrum
may be seperated into upstream and downstream
components allowing duplex operation. This ap-
proach has now lost favour for DMT modulation.

Discrete Multitine (DMT) Modulation This
is closely related to orthogonal frequency division
multiplexing. The frequency band is split into
many narrowband carriers, all transmitted in paral-
lel and carrying a fraction of the total information.
A tyical DMT transmitter will have 256 frequency
bands (or channels) of 4.3125kHz each. In a typi-

118



cal assymetric configuration channels 6-31 (24kHz-
136kHz) are used for upstream and channels 32-350
(136KHz-1.1MHz are used for downstreams. Other
channels are needed for synchronisation putposes.
The synthesis of this signal is carried out using digi-
tal signal processing and the inverse discrete fourier
transform. In principle other transforms such as
wavelet may perform better than FFT transforms
- this is still in the research stage. Each of the
freuquency channels will be modulated using QAM,
typical constellations are shown in figure 206).

Adaptive Spectrum A major advantage of
DMT is that the spectrum can be adaptively mod-
ified depending on conditions and the actual trans-
mission channel. If there is interference in one part
of the spectrum, then that part can be avoided.

Typically the modems will continuously moni-
tor the signal to noise ratio on each channel and
can swap bits assigned to each channel to maintain
equal BER across all channels i.e. bit (s) may be
swapped from the worst margin subchannel to the
best margin channel(s). A synchronisation protocol
is needed for the execution of bit swapping between
two modems.

An ADSL Transmitter

Clearly an ADSL transmitter has a lot of processing
to do. Some of the stages are listed below.

Transport of the Network Timing Reference
Since the data is now send directly onto the
network, it must be synchronised with the
network clock

Input multiplexer and Latency (Interleave) Path Assignment
The process of allocating bits to different
channels

Scrambler Scrambling reduces the correlation be-
tween signals and aids elimintation of interfer-
ence from echo signals

Reed-Solomon Forward Error Correction
Hard decision error correction used to protect
the data

Interleaving Jointly with the Reed-Solomon Er-
ror correction this greatly improves the error
rate. It is similar to the error correction ap-
proach used on CDs

Tone Ordering

Trellis Code Modulation Soft decision decod-
ing is used - this enables determination of the
SNR on each channel which in turn feeds into
the bit allocations

Pilot Tone To synchronise carrier frequencies

Inverse Discrete Fourier Transform To de-
termine the actual transmitted waveform

PAR Reduction Power fluctuation, parame-
terised by the Peak-to-Average power is a
significant issue with these techniques and so
techniques are needed to try and maintain a
nearly constant power.

Digital-to-Analogue Converter To generate
the actual analogue signal

Line Drivers To match impedance with the
transmission line

Coded Orthogonal Frequency Divi-
sion Multiplexing (COFDM)

Coded Orthogonal Frequency Division Multi-
plexing (COFDM) is essentially another name
for adsl-modulation-formats::Discrete Multitine
(DMT) Modulation (Section ) mentioned in the
context of ADSL. It is used in DVB-T (terrestrial
digital television broadcasting) and, in a slightly
different form in DAB (digital audio broadcast).
These broadcast media have similar interference is-
sues to DSL technologies and additionally have to
cope with multiple path fading (which can be time
varying in the case of mobile reception). The use
of an adaptive spectrum, as COFDM allows, en-
ables the system to work around these problems.
As with DTM COFDM uses soft decision decod-
ing taking account of the channel state information
(measured SNR in each channel). A guard interval
is used between symbols to reduce multiple path
problems.

Two good articles on COFDM have been written
by members of the BBC research and development
organisation

1. The how and why of COFDM

2. Explaining some of the magic of COFDM
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Figure 206: Typical subchannel signal constellations
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Figure 207: Adaptive Spectrum
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Figure 208: An ADSL Transmitter
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